Uppgjort / Auhtor

Sidnr / Page no

SignServer, Manual 1 (76)

Sekretess / Confidentiality

Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

SignServer

Manual

Ver: 3.1.3

09-09-29

Sidnr / Page no
SignServer, Manual 2 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

1 Introduction/Scope

The SignServer is an application framework performing cryptographic operations for other
applications. It's intended to be used in environments where keys are supposed to be protected in
hardware but there isn't possible to connect such hardware to existing enterprise applications or
where the operations are considered extra sensitive so the hardware have to protected more
carefully. Another usage is to provide a simplified method to provide signatures in different
application managed from one location in the company.

The SignServer have been designed for high-availability and can be clustered for maximum
reliability.

The SignServer comes with a RFC 3161 compliant Time-Stamp signer serving requests through
http or client-authenticated https. A MRTD (Machine Readable Travel Document, i.e. electronic
passport) signer. A PDF signer that adds a signature automatically to a uploaded PDF document,
ODF signer that adds a signature automatically to uploaded ODF document, OOXML Signer that
adds signature automatically to a uploaded OOXML document, and a validation service used to
lookup the validation of a given certificate.

From version 3.0 there also exists a mail signer framework that can be used to perform
cryptographic operation on emails.

Clusternode!
SignServer

Runs Jboss,
MySQLCluster
and Heartbeat
loadbalgnoer

Optianal Smartcard
Reader (Or HSM)}

Signature Clients

(&l

Management Station

Runs the Mysgl Cluster Management
Daemon

Can be used for cli administration of the
Optional Smartcard sgnsenver

Reader (Or HSM}
Clustemodez

SignServer

Runs Jboss,
MySOLCluster
and Hearibeat

loadbalancar

Drawing 1: Overview of a possible set up of a highly available SignServer solution

Sidnr / Page no

SignServer, Manual 3(76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

1.1 Changes from previous versions

1.1.1 Changes between Version 3.0 and Version 3.1

e A new Cluster Class Loader, simplifying the management of customized workers in a
cluster. All the resource data including the classes themselves are stored in database and

accessible from all nodes simultaneously. It is also possible to run multiple versions of the
same worker in the same SignServer cluster, this is useful when migrating a worker to new

code since both the old and new worker can be run at the same time.
e PDF Signer, Time-Stamp Authority and MRTD and their specific libraries have the

possibility to build into separate module archives (MAR files) that have to be uploaded to

the SignServer installation before usage, if the cluster classloader is enabled (default).

New signing module : MRTD-SOD.

Validators for several document types as well.

For minor changes see the change log at http:/jira.primekey.se

Installation packages for Linux/Windows of both SignServer and MailSigner using

generation software from Bitrock.

e A new ODF Signer module that adds signature to ODF documents, such as : odt,ods,odt
(tested with open office 3.1.0). Simple web page is added where ODF document can be
uploaded for signing, and resulted signed document downloaded.

e A new OOXML Signer Module that adds signature to Open Office XML documents, such as
docx,xIsx,pptx (tested with Microsoft Office 2007).Simple web page is added where open

office xml document can be uploaded for signing, and resulted signed document
downloaded.

1.1.2 Changes between Version 2 and Version 3

e Complete refactorisation of J2EE from EJB2 to EJB3 to simplify further development.

Renamed component “Service” to “TimedService” since 3.0 supports other services.

e A “TimedService” can now be configured with a 'cron-like' settings to have services
executed in other than just periodical intervals.

e A Validation Service API used to validate certificate from different issuers. The Validation
Service API have it's own easy to use Web Service used to integrate with other platforms.

e A Group Key Service API used to generate and manage group keys, symmetric or
asymmetric.

e Possibility to have customized authorization of requests, not just the built in client certificate

authorization list.
e The name SignToken is changed to CryptoToken and introduced a new concept of
ExtendedCryptoToken that supports symmetric operations.

e The RMI-SSL interface have been removed and replaced with a JAX-WS interface with a

simple client framework supporting different load-balance or high availability policies.

e All request data have changed from serialization to externalization to be easier to translate to

other platforms.

http://jira.primekey.se/

Sidnr / Page no

SignServer, Manual 4 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

e A completely new MailSigner API based upon the JAMES SMTP server to perform
automated cryptographic operations on e-mails very similar to the plug-ins for the
SignServer.

e Java 1.4 is no longer supported.

e A lot of new JUnit tests in the test suite.

e A PDF Signer that can add a signature to a PDF document through a simple HTML
interface.

e PKCSI11 Crypto Token to connect to different PKCS11 implementations.

Sidnr / Page no
SignServer, Manual 5 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

1.1.3 Changes between Version 1 and Version 2

signserver_server.property file have been removed and replaced with a global configuration
store.

It is now possible to dynamically add and remove available signers

A new type of component, “Service” that is run on a timely basis, used to perform
maintenance or report generation.

Improved cluster deployment functionality.

New CLI tools to batch configure the SignServer, and to backup a current configuration.
This makes it possible to set-up a configuration in test environment, dump the configuration
and configure the same it in production.

Uppgjort / Auhtor

SignServer, Manual

Sekretess / Confidentiality

Sidnr / Page no
6 (76)

Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3
2 Document History
Version Date Name Comment

0.1 2006-06-04 Philip Vendil Initial version of this document.

1.0 RC1 2006-08-22 Philip Vendil Prerelease version

2.0 2007-08-10 Philip Vendil Update with new features for version 2

2.1 2007-09-22 Tomas Updated with PDF Signer
Gustavsson

2.1.1 2007-09-27 Tomas Added PKCSI11 sign token
Gustavsson

3.0 2008-01-06 Philip Vendil Big update with 3.0 documentation.

3.1 2008-06-29 Philip Vendil Update for 3.1 with cluster class loader documentation.

3.1 2008-07-17 Philip Vendil Further update of cluster documentation after feedback from Tomas.

3.1.1 2008-09-09 Philip Vendil Installation package documentation and mail signer packaging.

3.1.2 2009-09-20 Markus Kilas Documentation for XML signers and validators

3.13 2009-09-20 Tomas Documentation for new properties CHECKCERTVALIDITY and

Gustavsson

CHECKCERTPRIVATEKEYVALIDITY

Sidnr / Page no

SignServer, Manual 7 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkéand / Authorized Datum Date Version
29/09/09 3.1.3
Table of Contents
I INTOAUCHION/SCOPE. ..eeevieiirieeeiiieeetie et te ettt e ettt e e ette e et e e s teeesbaeesasaeessseeesssaeeasseeensseeassaeenssaeansseennseens 2
1.1 Changes frOM PrEVIOUS VETSIONS. ...cc.uuieiurrerieeerreeessreeassreeasreessseeesseeessseesssseeessseessssssssseessssnssees 3
1.1.1Changes between Version 3.0 and Version 3.1......cccccooiiiiiiiiiiniiiiieieeiee e 3
1.1.2 Changes between Version 2 and Version 3..........cccceveeiiniiniinienienenienee et 3
1.1.3 Changes between Version 1 and Version 2...........coccueeiierieeniienieeniienieeitee e eieee e 5
2 DOCUMENE HISTOTYeoutiiiiiieiiieiie ettt ettt ettt e et e e e teesate e bt essbeeaseesabeenseessbeenseesnseenseansseean 6
3 Quick start of a Simple Time-Stamp SEIVET........cccuieriiiiiiiriieiiecie ettt ettt et e e ree e e ebaeeeeeaeees 11
3.1 ReQUITEA SOTIWATE......viiiiiiiieiiecieeee ettt ettt ettt et e et eesbeesaaeesbeensaesnseenseeaens 11
3.2 INStAllAtioN STEPS....ccviiiiiiiiieiiieieeeie ettt ettt et e st e e b e e stae e beesaeeesbeessaeenbaessaeenbeeeesbeeeeanraaeens 11
4 Quick start of @ SImple Mail SIGNET.........cocoiiiiiieiieiiieieeee et e e e e e eeee 13
4.1 ReqUITEd SOTEWATE......cccuviiiiieeiiie et ettt e e te e et e e et e e st eesssaeessseeessseeesnsneeas 13
T T Y L 1 10 A BN 1<) o SRR 13
5 Terms Used in ThiS DOCUMENL.......ccc.eiiiiiiiiiiiiiiiie ettt e 15
6 OVETall ATCRITECTUIEeiiiiiiieiiie ettt et e e et e e et e e s beeesabee e sseeesaseeeeansnsaeeaeeeennsnnees 18
0.1 STZNSEIVET. ... ittt ettt e b et e bt e et e e bt e e st e e beesate e bt e enbeebeesabeeeeennbeeeaans 18
0.2 MAIISIZINET ..c..eiiiiiiiieeit ettt et ettt ettt be et st sb et e e 19
7 AVALLADIE PIUG-INS...ctiiiiiieiieciteie ettt sttt ettt e ettt e et e e e nbaee e eneneeas 20
7.1 Configuring @ PIUZ-IM.......ceeiuiiiiieiieiie ettt ettt e et e sttt e st e e bt e seaeebeessaeesseassseeesanseeeens 20
7.2 SIGNSEIVEL SIZNETS. ... eieuiieiiieiieeiiertie et esiteeteetteeteesseeeseesseeesbeeseesnseenseessseeseesnseenssseessnsseeesnes 20
7.2.1 TIME-STAMP STZNCT.....ccuvietieiiieitieeieeitieeteestteeteeteeeteesseeeseeseeesseesseesnseesseeasseesseessseessneesnns 20
T.2.1.1 OVETVIEW ...ttt ettt ettt et h et ettt e bt eat e s bt et e eet e e st e e sabeeeneeennneenns 20
7.2.1.2 Available PrOPEITIS......c.cciiiiiiieriieeiieiieeieeeie ettt ettt saeebe et eeeentaeeeeneneeeeennes 21
7.2.2 MRTD SINCT......eiiiuiieiiieeeiieeeeteeesteeette e et e e e teeessaeeesaseeessseeessseesnsseesassaaaessennsssseeeesennnsssnes 22
T.2.2. 1 OVETVIEW...uuiiiuiiiiieette ettt ettt ettt et ettt et e bt e st e e bt e e st e e bt e eabe e bt e e e enbbeeesanbeeeeanneee 22
7.2.2.2 Available Properti€s........cccuiiiuiiiiiieieiieeeiie ettt eite ettt e e saee e et e e e e e e ennaaeaaaeeas 22
7. 2.3 PDF SI@NET....c.uiiiiieieieeie ettt ettt ettt et e s st et e esaesaeentesntenseensesneenseenseeens 23
7. 2.3.1 OVETVICW.....uvieeieiieeiieeeiieeetee et e et e et e e et e e eabeeessaeesasaeesssaeesasaeasssaeeasssssaaeeseannssseeaaeens 23
7.2.3.2 Available PrOPerties......c.coiiiiiieiiiiiiieiie ettt e e 23
7. 2.4 ODF SI@NET.....ceiiieiieiiieiie ettt ettt ettt ettt et e et e ebeesabeebeeeabeeseesaseensaeeeannseeeennes 27
T.2.4.1 OVETVIEW ...ttt ettt sttt et sh ettt be ettt s bt et s et e e bt e sateeebeeenateenas 27

ODF Signer, which stands for Open Document Format Signer is a plug-in to SignServer that
applies server side signature to documents in ODF format. It has been tested with Open

OFFICE 3.1 ettt ettt sttt et h et e et e s bt et e a e eh et et e saeeeneeenaeeas 27
7.2.4.2 Available PrOPEItIs......c.cccviiiiiieriiieiieciie et eeee ettt et ettt ebeesaae e e e ntaeeeeeneeeeennes 27
R 010D, €1 | DI ¥ 1 1<) PSRRI 27
T.2.5.1 OVETVIEW .ottt ettt ettt b e et e b e st e bt e e et e e bt e e abe e bt e e e eabbeeeeabbeeeeannes 27

OOXML Signer, which stands for Open Office XML Signer is a plug-in to SignServer that
applies server side signature to documents in OOXML format. It has been tested with MS

OFTICE 2007 ..ottt ettt ettt et ettt e et et e e e e et et e esse e st eteensesseenseenseaseenseensenseeenseeennsens 27
7.2.5.2 Available PrOPEIties.coiiiiiiiiiiiiiieiie ettt e 27
7.3 SignServer Validation Service Framework...........ccoociiiiiiiiiiiiiiiiiceeeeee e 28

7.3.1 Default ValldatIONSEIVICE.eueeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeererennns 28

Sidnr / Page no
SignServer, Manual 8 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3
7.3 1.1 OVETVICW.....uvieeiiieeeeiieeetie ettt e ettt e et e et e et e e e aaeeessaeesssaeeensaeasssaeeanssssaaeeeeeannssseaaaeans 28
7.3.1.2 Available PrOPEIties.c.coiiiiiiiiiieeiieiie ettt ettt ettt e e e e e 29
7.3.2 The Validation CLIINETTaCe........c.ceiuiiiiiiiieeiieiie ettt e e 31
7.4 SignServer Group Key Service Framework...........cccooviieriiiiiiiiieniieiieceeccee e 32
T A.0.1 OVETVIEW ..ottt ettt ettt sttt et sb ettt e s bt et e st e sbeeteset e e st e e sabeeebeeennneenas 32
7.4.0.2 Available PrOPEItIes......c.ccciiiiiierieeiieiie ettt ettt ettt ettt e e e eaaeeeeneneeeennnes 32
7.5 MAIL PTOCESSOTS. ..c..eeutieuiiitieiieie ettt ettt ettt ettt ettt et e st e bt et e eatesbe et e eneesbeenbeeenseeeanteaenseas 33
7.5.1 SIMPIEMATISIZNETceiiiiiiiiieeiieeeie ettt e et ee e st e e st e e ssaeeesstaeensaaeeeesennnsnees 33
T.5. 1.1 OVETVIEW. ..ttt ettt ettt ettt et b e et e bt e et e s bt e et e e bt e e e eatbeeesabbeeeeanneee 33
7.5.1.2 Available Properti€s........cccuiiiuiiiiiieiciie e eette ettt et e et reeestae e e e e e e e eennaaeaaaeeas 33
8 Available CryptOTOKENS.cccuiiiiiiiieiie ettt ee et e e e te e e sabeeesbee e saeeesseeenssnaaeeens 35
8.1 PI2CTYPLOTOKEN.eeeieiieeiieeeiie ettt ettt ettt e st e e tb e e e abaeeaaeeensaaeeeesssssaaeeeeennnnnees 35
LT B RO 1) T4 15 PSPPSR 35
8.1.2 Available PrOpPerties.........cccuiiiiiiiuiiiiieiie ettt ettt ettt st 35
8.2 PrimeCardHSMOCTYPtOTOKEN.....ccviiiiiieiieiieeiteee ettt ettt et et e e enes 35
B2 1 OVETVIEW....euiintiiiiesitete ettt ettt sttt b ettt b et e h e bttt satesbeea b e e bt e bt eatesat e bt enteebtenbeenseeeas 35
8.2.2 AVAIlabIE PrOPETLICS. .. .eietieiieiiieiieeiteriie ettt ettt ettt et stae s te et e esbeesseesnsaesseeenseeennnes 35
8.3 PRSI ICTYPLOTOKEN. ...ttt ettt ettt ettt ettt esbeestaessbeesaeaesseesaesnsaessaeenseenes 36
831 OVEIVIEW ...ttt ettt et e b e et b e st e bt e e et e sbeesabeenbeeeabeeenaeee 36
IR BN £ 1 1 o) [l o0 (0] 0 1S 3 1< SRS 36
8.3.3 EXAMPIE USAZE....cccuveiieiiieiiiie ettt e e e et e e et e e s ae e e s nteeesnseeeanssaeeeeeeennnnnees 36
N Te) (1@ Y 01 (o1 o) < s PSSP 37
LI B0 1) Y4 15 PSR 37
8.4.2 AVailable PrOPEItICs....cccuuiiiiviiieiiieeiieeciee ettt ettt e et e e e e et eeraeesaae e s aaeesasaeennnnnes 37
8.4.3 EXAMPILE USAZE....cuveeiiieiiieiieeiee ettt ettt ettt et et e et e bt e e bt e st e ettt e e e anbeeeeennees 37
9 Setting AUthOTIZATION TYPC....ccuviiiiiiiiieiieeii ettt ettt tee st e e et ee e e nbaeeeeneaeeas 38
LB B3 Fea s N)) VOO PPPPURRPPPRN 38
0.2 MALLSIZNCTccutieiiieiieeiie ettt ettt et ettt e et e et e st eebeessaeesbeessaeenseessteenseansseenseessseenseesnsseeeans 38
10 DiSAbIING @ WOTKET.....ccuiiiiiiiiieiieeie ettt ettt ettt et esaaeesbeessbeenseesnseenseennneas 38
11 Archiving Responses (SignServer ONlY)........cocveiiiiiiiiienieeieesie ettt esee e esteeereeseeeeseeseneas 38
12 Checking validity of signer certificates (SignServer only).........cccceeeveerieeciieniieecieenieeieeeeee e 38
13 The Global Configuration STOTE..........ccerieieriieeiieeeieerieeeeieeestee et e sreeeeaeesaaeesssnnraeeeeeeennnenens 39
13,1 SI@NSEIVET SPECTIIC. .o uuiiiiiiieeiiieeieeeetteeeite e etee et e et e e et e e et eessteeesaseeessseeensseeesseesnsseeensseennnes 39
13.2 MailSIZNET SPECITIC. ...uiiiiuiiiiiiiieeiiee ettt ettt e et e e et e e e sateeeeaeeetaeesssaeessseeessseeensseeensseaeeeans 39
14 TIMEA SEIVICES...cutietieeiiieiieete ettt et et et et e e e bt e bt e s st e e beesate et eesaeeeabeesaeeeabeesnbeeeeanneeeesnnneeas 40
14.1 CertificateExpireTimedService (MailSigner only)........ccccoecieriiiiiieniiiniienieeiiee e 40
L. 1.1 OVEIVIEW....utiieiiiieeiiee et e ettt e e tte e et e e e te e e s bt e e ssbaeesssaeesasaeessseeasseeessseesnssaeansseesnseeesssaeeansssees 40
14.1.2 Available Properties.........cocuiiuiiiiieiieeie ettt ettt ettt e e e e 40
14.1.3 Available Substitution Variables.............cccciiriiiiiiiiiiiiiie e 41
15 The Main WebService INterface.........coeviieiiiiiiiiieiieeieeeee e e e 42
I5.1 OVRIVIEW. .ttt ettt ettt e h ettt sb et e e s bt et e a b e sbe e bt estesnteeenbeeenneeas 42
15.2 Java CHENE AP ..ottt ettt et e ettt e et e eane s 42
15.2.1 Load Balance POLICIES.cc.eeiiiieiiiiieeiieieeeeeseee ettt s 43
15.2.2 CLICHENL .ttt ettt ettt et b et et e bt e e e st e sbe e bt e emseeeenbeesnneeeneeas 43

16 The CIUSTET Class LLOAAET oo e e e e e e e e e e e e et e e e e e e e e e eeaans 44

Sidnr / Page no
SignServer, Manual 9 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkéand / Authorized Datum Date Version
29/09/09 3.1.3
16.1 How to configure your worker to use the Cluster Class Loader.........c..ccccoevveeniiiiniiincnnnen. 45
16.2 Building Module ATCRIVES........ccuiiiiieiiieiieeie ettt ettt e s aeeeeens 45
16.2.1 The MAR DESCTIPLOTcuvieuiieiiieiieeiieeiteeiieettesite et et e eteesteeebeesseesnbeenseeessnsaeesennseeeennes 45
16.2.2 Including Worker Configurations.............ccueerierieeniieniieeniesieenieesieeieeeveesseesereeesenaeeens 46
16.2.3 USING ANT ..ottt ettt ettt e et essbeesaeeesbeesaesnsaesseassseenseesnsaenseeesnns 46
16.2.4 Building Manually..........cccveruiiiiiiniiiiieie ettt ettt et eveessaessaeesensneeesnnaaeenns 48
16.2.5 Managing Module ATCRIVES...........cccuiiiiiiiiiiieiie ettt esieeebe e e ebeeeeeereeeesreaeenes 48
16.2.6 Changing the default configuration of the Cluster Class Loader...........cccccccvveveveeennnnnnne. 49
17 Building and Deploying the SignServer or MailSI1gner...........ccoovveeviieeiiieeiiieeieecee e 50
18 Administrating the SIZNSEIVET.......c..iiiiuiiieiiiecie et e e e e e e e e e neenes 51
18.1 General COMMANGS.........cccuiiiiiieeiiie et e et e eiteeeteeeeteeestreeestaeeeetaeeesaeessseeesnseeesssaaessssseeeasannes 51
18.2 SignServer Specific COMMEANS........ccueiiiieriiieiieiie ettt ettt et e s as 53
18.2.1 Authorization Related............ccoouiiiiiiieiiiicieeeeee et 53
18.2.2 Database Related.........ccoovuiriiiiiiiiiiiiiicece et 53
18.2.3 Archive Related......c..coouiiiiiiiiiiiiiieiece et 54
18.2.4 Group Key Service Related...........ocveeiiiiiiiiiiiiieiieeieeeeeee et 54
18.2.5 Module Archive Related.........cooeiiiiiriiiiiienieieeeeee et 55
18.3 MailSigner Specific COMMANAS........c.cccveriieriieeiieiiierie ettt see et seeeesibeeesabeeeesnsaeeeenes 55
19 Making the SignServer highly-available.............cccoooiiiiiiiiiiiiiiiececeee e 56
19.1 HTTP access requires a 1load balancer...........c.ccooviieiiieiiiieiiiieeie et 56
19.2 Setting up @ MYSQL CIUSTET........cceiiieiiieeeiie ettt ettt e et staeeeae e e e e esnaraeeeeeennes 56
1.3 MATISIENET ... eeeeiiieeiiee ettt ettt ettt e ettt e et e e s taeessteeessteeessseeesssaeessaeansseesssseesnsseeassneeesennns 56
20 InStallation PACKAZES........ccccuiieiiieeciie et ettt tee st e et e et eeeaaeestaeestaeeeeeesnnsaeeaeeeennnnnees 57
20.1Using the Installation Packages...........cocieriiiiiiiiiiiieicee e 57
20.1.1 SIGNSEIVET NOGE.....cveiiiieiiiiiiieeie ettt ettt ettt e e st e e 58
20.1.2 SignServer Mana@eMENL.cc.eeeiieruieriieiieeieeiee st eieeeteesteeste e aeesseesseesseesaeeesnneeeenns 60
20.1.3 MaAIISI@NET SEIVET....ccuuiiiuiieiieiieeiteeite et ettt e et e st e et e sateebeesabeesseassaeeseessneeesansaeeeans 61
20.1.4 MailSigner ManagemeNnt...........c.cceveeuieriieriieeniieeieeee et esieesteesaeeseseesseessseeseessseenseesnseeens 63
20.2 Generating Installation PaCKages............cccuieriiiiiieniiiiiierie et e 63
21 FOT DEVELOPETS. ...couvieiieeiiieiieetteeie ettt ettt e et e st e e beesateesbeessbeesseessseessaessseeansseeeesseeesansseeeennnes 65
21.1 Building with Customized COde.........ccocoviiiiiiiiieiieciieteeie ettt e ae e eeraee s 65
21.2 Implementing WOTKETS........ccccuiiiiiiieeiie et et etee et et see e etee e st e e sbee e s nseeesnsaeennseeensaeeeas 65
21.2.1 The ISigner INteTTACE.........eeieiiieiie e et e s 66
21.2.2 The ITimedService INterface............coiuiiiiiiiiiiiieiceeeeee e 66
21.2.3 IValidationService INterface...........cooouiiriiiiiiiiiiiiieie e 67
21.2.4 IGroupKeyService INtErface.........ccvieeuiieeiiiiieiie ettt e e e e 67
21.2.5 IMailProcessor INTEIACE.cccuuiiiuiiiiiie ettt e e e re e e e e e 69
21.3 Implementing Crypto TOKENS........cccueiiiieiiieiiieiie ettt 69
21.3.1 The ICryptoToken INterface...........cccuieruieiiiieiieeiieieeieee et 69
21.3.2 The Extended Crypto Token INterface..........ccceceeriiiiiieniieiiienieeieesiee et 71
21.4 Other CUSTOMIZALIONS. ...c..eerveriteriieieeitesttete ettt ettt et etesetesbeesteestenbeesesaee st essesseebeentesaeeennees 72
21.4.1 The IValidator INtErface...........cooeriiriiriiiierieeeee e e 72
21.4.2 The TAUthOTizZer INtEITace.cccueiuiiiiieiecieeee e e 73
21.5 Using the Global Configuration STOT€..........cccuvieriuieeriiieeiiieerieeeeree et e e seaeeeaeeeeeaeesenee s 74

0 N L SRR 75

Sidnr / Page no
SignServer, Manual 10 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3
22.1 AULOMALIC JUNIE TESES.cennneeee ettt e e e e e e e e e e e e e eaeeeeeeeeaeaaaaaeaeeeeeeaennaaaaaes 75
22.2Testing the TIMeStamp AUtNOTILY......cceiiiiiiiiiiiieie et e 75
22.2.1 TRE TSA TESE CLIENL....eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeaeeeeeeeaeeeeaeeeeeenneaeeananseeeennnnns 75
22.2.2 MANUAL TESES .o eeeieiieieeeeeeeeeee e, 75

23 RETETEICES. c.ceeeeeeeeeeeeeeeeeeeeeeeeee e 76

Sidnr / Page no

SignServer, Manual 11 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

3 Quick start of a Simple Time-stamp Server

This section will show how to set up a quick and simple standalone time-stamp server, accepting
time-stamp requests over plain HTTP.

3.1 Required Software

Java 1.6 (or 1.5) (http://java.sun.com)

JBoss-4.2.3.GA (http://www .jboss.org)

Apache ant version 1.7 (http://ant.apache.org)

SignServer-3.1 (http://www.signserver.org)

1 web-server key-store in Java key-store format (JKS), (make sure that the server certificate
have the right host name in it's CN, optional (used for HTTPS))

1 Root certificate of the web-server in DER encoding (optional (used for HTTPS)).

e | Time-stamp key-store in PKCS12 format

3.2 Installation Steps
1. First make sure that ant, Java and JBoss is installed properly.
2. Set the JAVA_HOME, JBOSS HOME and SIGNSERVER HOME environment variables.

3. Set the SIGNSERVER NODEID environment variable, it should be a server unique string
identifying the node in a cluster. (optional for one node installations).

4. Unzip the SignServer package and go to it's home directory.

5. If you are going to protect the HTTP communication with SSL, you2 need a JKS SSL server
key store. Rename the web server key store to tomcat.jks at put it in a 'p12' subdirectory.

Also place the web server root certificate in DER encoding in the same directory, call it
rootcert.cer

6. Then copy the signserver build.properties.sample file to signserver buld.properties and edit
the file. At least configure the httpsserver.password property. If you are not using https
uncomment the row “j2ee.web-nohttps=true”.

7. Do 'ant deploy' and then start JBoss (JBOSS _HOME\bin\run.sh) in another console.
8. Edit the signserver_cli.properties and set all properties starting with 'hostname.'

10. Use the signserver cli to upload the Time-Stamp Authority module to the SignServer . (if it's not
executive use chmod +x bin/signserver.sh)

Sidnr / Page no
SignServer, Manual 12 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

bin/signserver.sh module add dist-server/tsa.mar demo

This command uploads the Time-Stamp related code to the cluster and creates a demo configuration
with a preconfigured soft key store and certificate.

(In the path section, use "\' for "\' in windows environment.)

Then run
bin/signserver.sh getconfig 1

And double check the configuration. (Important, the properties are case sensitive).

Finally run
bin/signserver.sh reload 1

To activate the configuration.

11. Run the test-client to see that everything is up.

cd dist-client

java -jar timeStampClient.jar “http://localhost:8080/signserver/process?
workerId=1"

N

The message “TimeStampRequest Validated” should appear once a second.

Also check JBOSS HOME/server/default/log/server.log that successful messages appear.

Sidnr / Page no
SignServer, Manual 13 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

4 Quick start of a Simple Mail Signer

This section will do a fast and minimal configuration of a Mail Signer that will sign all authorized
mails sent through it with a PKCS12 cryptographic token.

4.1 Required Software

Java 1.6 (or 1.5) (http://java.sun.com)

Ant version 1.7 (http://ant.apache.org)

SignServer-3.0 (http://www.signserver.org)

1 mail signing key-store in PKCS12 format (The key store should have a RFC822Name that
matches the sender address that will be replaces by the Simple Mail Signer plug-in). There
exists one keystore in src/test/mailsigner testl.p12 with a RFC822Name of
mailsigner@someorg.org that can be used for testing.

4.2 Installation Steps
1. First make sure that Ant and Java is installed properly.
2. Set the JAVA_HOME and SIGNSERVER HOME environment variables.

3. Set the SIGNSERVER_NODEID environment variable, it should be a server unique string
identifying the node in a cluster. (optional for one node installations).

4. Unzip the SignServer package and go to it's home directory.

5. Then copy the signserver build.properties.sample file to signserver buld.properties and edit
the file. First uncomment row “build.mode=MATILSIGNER” to instruct that this installation is a
MailSigner and not a SignServer. Then go to the end of the file and fill in the required properties:
mailsigner.primarydns, mailsigner.secondarydns and mailsigner.postmaster.

6. Then build the mail signer with the command 'ant' in the SIGNSERVER HOME directory.

7. Edit the sample-configs/qs_simplemailsigner configuration.properties file and set the sender and
from addresses as well as the path and password to the cryptographic token that should be used.

8. Start the mail signer application with the command: ant run

9. Open up another console, go to SIGNSERVER HOME and use the signserver CLI to upload the
configuration file. (if it's not executive use chmod +x bin/signserver.sh)

bin/signserver.sh setproperties sample-configs/
gs_simplemailsigner configuration.properties

mailto:mailsigner@someorg.org

Sidnr / Page no
SignServer, Manual 14 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Then run
bin/signserver.sh getconfig 1

Finally run
bin/signserver.sh reload 1

To activate the configuration.

19. Finally add an authorized SMTP user with the command:
bin/signserver.sh addauthorizeduser <username> <password>

20. Now is the simple mail signer ready to be used for signing outgoing emails. Configure you e-
mail client to connect to the MailSigner server using the username and password you just provided
and send a mail to a colleague to verify it is signed properly.

Uppgjort / Auhtor

SignServer, Manual 15 (76)

Sidnr / Page no

Sekretess / Confidentiality

Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3
5 Terms Used in This Document
Term Explanation

Signer

Crypto Token (former Sign Token)

Extended Crypto Token

PKCS11CryptoToken

TimedService (former Service)

Worker

Processable

Worker Configuration

Global Configuration Store

A Processable service performing signatures
upon requests. This could be a ready made
signer or a custom developed one.

A Crypto Token is a name for the entity
containing the private key and is responsible for
its cryptographic operations. Every Processable
have a Crypto Token that can be a PKCS12,
Smart Card or HSM connection.

An enhanced Crypto Token with support for
symmetric key operations.

A Crypto Token able to communicate with
Hardware Security Modules through the
standard PKCS11 interface.

A TimedService is a task that is run on a timely
basis, performing maintenance tasks like
changing active key or generate a report.

A common name for Processable (Signer or
other type of service), Mail Processor and
TimedService

A type of worker that is used to process requests,
i.e. not a TimedService.

Each Worker can be configured with properties
specific for that worker. There are two sets of
worker configuration one “Active” that is used
by the signer and one “current” which is the one
configured by the administrator. The current
configuration isn't used in production until the
administrator issued the reload command. This
makes it possible for the administrator to
configure multiple properties and double-check
them before they are actually used.

Is a dynamic store used to define available
Workers and their Crypto Tokens. But other data
that needs to be read globally could be set there
as well. The global configuration properties are
activated immediately. There are two different
scopes for the store data, Global Scope and
Node Scope.

Uppgjort / Auhtor

SignServer, Manual 16 (76)

Sidnr / Page no

Sekretess / Confidentiality

Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3
Term Explanation

Global Scope
Node Scope
Worker Id
Worker Name

Mail Processor

Data stored in the global configuration that can
be read by all nodes in the cluster.

Data that is node specific and can only be read
within the same node.

Unique identifier of a worker, an integer larger
than 0

A name used as a human readable synonym for a
Worker Id

A plug-in used for the mail signer to perform
automated cryptographic operations on e-mails
sent through the mail server. This could for
instance be the Simple Mail Signer for attaching
a SMIME signature to all mails.

Validation Service

A Processable that checks if a certificate is valid
or not. Have a Default Validation Service
implementation that should work in most cases.
A Validation Service should have one or more
Validators configured.

Group Key Service

Validator

Authorizer

Time Stamp Signer

MRTD Signer

A Processable that can be used to manage,
generate and distribute group keys to a set of
clients. The service support four types of calls,
fetch group key (used by clients), pre-generate
group keys, switch encryption key (key used to
safely store the group keys in database) and
remove group keys. There exists a Default
Group Key Service that should satisfy most use
cases.

A Validator is responsible for checking the
status of one or more issuer's certificates. This
could be as a OCSP client or a CRL checker or
just looking up the status in a database.

An interface that enables developers to integrate
the authorization parts with existing
authorization systems of who is authorized to
perform requests to a Processable.

A Signer that can be used to set up a Timestamp
Authority according to RFC 3161.

A Signer that performs signatures of MRTD
(Machine Readable Travel Documents, i.e.
Electronic Passports) blobs.

SignServer, Manual 17 (76)

Uppgjort / Auhtor

Sidnr / Page no

Sekretess / Confidentiality

Philip Vendil UNRESTRICTED
Godkéand / Authorized Datum Date Version
29/09/09 3.1.3
Term Explanation
PDF Signer A Signer that attaches an electronic signature
signature to a PDF document.
ODF Signer A Signer that attaches an electronic signature to

ODF (Open Document Format) Document

OOXML (Open Office XML) Document

an ODF document. ODF Signer is tested with
documents produced by Open Office v 3.1.0

XML-based file format for representing
electronic documents such as spreadsheets,
charts, presentations and word processing
documents.more..

XML-based file format for representing
spreadsheets, charts, presentations and word
processing documents.more..

OOXML Signer
Simple Mail Signer

Cluster Class Loader

A Signer that attaches an electronic signature to
an OOXML document.

A Mail Processor that envelopes authorized
mails with a SMIME signature.

A Java Class Loader specific for the SignServer
project. The class loader simplifies the
distribution of new code to a cluster by
uploading and fetching it from database. It also
enables the use of multiple versions of the same
worker code in the same cluster.

Module Archive or MAR file

A 'Module Archive' is a specific packaging
format used by the cluster class loader to upload
code to a cluster. A MAR files is structured in a
specific way with a descriptor containing
module and version information. The MAR file
also contains one or more parts depending on
were in the system the code will be deployed.

A Module Archive have the postfix .mar and can
be generated with a specific ANT-task.

http://en.wikipedia.org/wiki/Office_Open_XML
http://en.wikipedia.org/wiki/OpenDocument
http://www.openoffice.org/

Sidnr / Page no
SignServer, Manual 18 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

6 Overall Architecture

Since the 3.0 version the SignServer project have two different builds, one is the classical
SignServer and the other is a Mail Processing Server called the MailSigner.

6.1 SignServer
The SignServer is a framework designed to perform different kind of cryptographic operations for
different applications.

Since the 3.0 version there are three kind of processable services. Signers (used to sign or in other
way process requested data). Validation Services used to verify the validity of a certificate against a
set of backed issuers. The validation service can be used to simply the integration of PKIs into
existing applications. The the third processable service is a group key service framework used to
manage and to distribute group keys for different applications, these keys can be both symmetric
and asymmetric. In addition to processable services there also exists another concept called Timed
Service (called just 'service' in 2.0 edition) which are plug-ins run at defined intervals performing
maintenance or reporting routines.

Out-of-the-box are there five Signers ready to be used. They are

1. MRTD Signer used for signing Machine Readable Travel Documents (also known as
Electronic Passports),

2. Timestamp Signer that can be used to set up a Timestamp Authority,

3. PDF signer that can be used to automatically sign PDF documents.

4. ODEF signer that can be used to automatically sign ODF documents (odt,ods,odp). Tested
with Open Office 3.1.0.

5. OOXML Signer that can be used to automatically sign Open Office XML documents (docx,
xIsx,pptx). Testd with Microsoft Office 2007.

The main way of communicating with the SignServer is through a WebService interface (previous
versions had a RMI-SSL interface, but that have been replaced by the WS for better platform
independence.). Timestamp Signer is also available through HTTP communication, and the PDF
signer, ODF signer and OOXML signer have simple HTML pages that allows users to upload
documents to be signed.

For an overview of the different concepts in the SignServer see illustration 1. The base component
is called Worker which is assigned an id, optionally a name and a configuration. A sub component
is a Processable which receives and processes requests. A Processable (optionally) have access to a
cryptographic token (CryptoToken) in charge of managing the keys of a Processable. A
CryptoToken can be either software or hardware based.

The applications 1 administrated through a command-line interface, where the properties and access
control can be configured.

Sidnr / Page no
SignServer, Manual 19 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

One SignServer can have multiple services for different purposes.

6.2 MailSigner

The MailSigner is a different build of the SignServer, targeted to perform automated cryptographic
operations on e-mails. The MailSigner is an add-on to the James SMTP project and the James
SMTP binaries is shipped along with the SignServer package for simplified set-up.

The MailSigner's main component is the MailProcessor which is the base for all MailSigner plug-
ins. There exists one ready to use MailSigner called the SimpleMailSigner. It generates a signed
SMIME message of all mails sent to through the server.

One instance can have more than one MailProcessor configured. Then will the plug-ins be called by
worker id in ascending order.

The MailSigner have similar CLI interface and is administrated much in the same way as the
SignServer. The SMTP server have support for SMTP Authentication. For more information about
the James SMTP server see http://james.apache.org .

SignServer Campaonents : : MailSigner Components :

MailProcessor

-= B 1
mmm=mmmT T - 1
TirmedService mmmmmm=m T -7
% - - :
@4 :
i
!
- -7 - 1
. .
-7 - ~ I
i{: -7 |
GroupKeySerice “alidationSenice Signer '
1
1
1
-7 - !
] - [|
i
!
1
1
1
1
1
1
1
1
1

. N
W Vi e V) RSN

|
!
y
E DefaultGroupkeyService g DefaultvalidationService E TimeStampSignar E PDFSigner E MRTDSigher % SimpleMailSigner

,,

Hllustration 1: Components in the SignServer project

http://james.apache.org/

Sidnr / Page no
SignServer, Manual 20 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7 Available Plug-ins
7.1 Configuring a plug-in

A worker component is configured by entering its class path (and optionally its crypto token class
path) in a memory bank called the global configuration and then issuing the reload command.
There exists sample configurations for most of the plug-ins in the 'sample-configs' directory.

7.2 SignServer Signers

There currently exists five types of signers. The first one is the time stamp signer generating RFC
3161 compliant timestamps using the Bouncycastle library. A MRTD signer creating 'Machine
Reader Travel Document' signatures using the RSA algorithm from pre-padded data. PDF Signer
used for automatically signing requested PDF documents, ODF signer used for automatically
signing requested ODF documents, OOXML Signer used for automatically signing requested
OOXML documents.

7.2.1 Time-stamp Sgner

Important, From 3.1 must the Time-Stamp Authority module be uploaded to the SignServer before
it can be used. This is done with the command:

'oin/signserver.sh module add dist-server/tsa.mar'

The time-stamp signer have the class path: org.signserver.server.signers. TimeStampSigner

7.2.1.1 Overview

The time stamp server generates time stamp tokens and have the support for the following options:
« Set of accepted policies
« Set of accepted algorithms
« Set of accepted extensions
+ Accuracy microseconds
+ Accuracy milliseconds
+ Accuracy seconds
+ Included certificate chain (currently doesn't include CRLs)
+ Ordering
- TSA name

The time stamp signer currently don't support:
+ CRL inclusion
- Signed attributes
+ Unsigned attributes

Sidnr / Page no

SignServer, Manual 21 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Timestamps requests are served through a http service at the URL:
'http://<host name>/signserver/process?workerld=<worker 1d>"'
If no 'worker Id' parameter is specified then will the id of 1 be used as default.

The time-stamp signer requires a time-stamp certificate with the extended key usage 'time-stamp'
only. The extended key usage extension must be critical.

7.2.1.2 Available Properties

The following properties can be configured with the signer:

TIMESOURCE = property containing the class path to the ITimeSource implementation
that should be used. (OPTIONAL, default LocalComputerTimeSource)

ACCEPTEDALGORITHMS = A"} separated string containing accepted algorithms, can be
null if it shouldn't be used. (OPTIONAL, Strongly recommended)
Supported Algorithms are: GOST3411, MDS5, SHA1, SHA224, SHA256, SHA384,
SHA512, RIPEMDI128, RIPEMD160, RIPEMD256

ACCEPTEDPOLICIES = A''; separated string containing accepted policies, can be null if
it shouldn't be used. (OPTIONAL, Recommended)

ACCEPTEDEXTENSIONS = A ';' separated string containing accepted extensions, can be
null if it shouldn't be used. (OPTIONAL)

DEFAULTTSAPOLICYOID = The default policy ID of the time stamp authority
(REQUIRED, if no policy OID is specified in the request then will this value be used.)

ACCURACYMICROS = Accuracy in micro seconds, Only decimal number format, only one
of the accuracy properties should be set (OPTIONAL)

ACCURACYMILLIS = Accuracy in milliseconds, Only decimal number format, only one of
the accuracy properties should be set (OPTIONAL)

ACCURACYSECONDS = Accuracy in seconds. Only decimal number format, only one of
the accuracy properties should be set (OPTIONAL)

ORDERING = The ordering (OPTIONAL), default false.

TSA = General name of the Time Stamp Authority. (OPTIONAL)

Sidnr / Page no
SignServer, Manual 22 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.2.2 MRTD Sgner
Important, From 3.1 must the MRTD Signer module be uploaded to the SignServer before it can be
used. This is done with the command:
'vin/signserver.sh module add dist-server/mrtdsigner.mar
The MRTD signer have the class path: org.signserver.server.signers. MRTDSigner
7.2.2.1 Overview

The MRTD Signer performs a RSA signing operation on incoming data. The data should already be
padded. This signer i1 used to sign 'Machine Readable Travel Documents' i.e. electronic passports.

7.2.2.2 Available Properties

No configuration properties exists.

Sidnr / Page no
SignServer, Manual 23 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.2.3 PDF Sgner

Important, From 3.1 must the PDF Signer module be uploaded to the SignServer before it can be
used. This is done with the command:
'vin/signserver.sh module add dist-server/pdfsigner.mar

The PDF signer have the class path: org.signserver.server.signers.PDFSigner

7.2.3.1 Overview

The PDF signer adds digital signatures to PDF documents. It supports addition of visible or
invisible signatures. Both visible and invisible signatures serve the same purpose of signing
document, and technically are equivalent in that sense. The difference is that when visible signature
is applied to a document, signature image (in shape of rectangle) is placed at the specified place in
the document, clicking on which will allow seeing properties of the signature (Adobe Acrobat
Reader). On the other hand when invisible signature is applied, signature properties are accessed
through menu items. For visible signatures properties such as : custom signature image, signature
rectangle, page at which signature rectangle to be drawn and others can be specified (see Available
Properties below)

PDF Signer can also apply timestamp to a signature. If the signature is timestamped, it can be
viewable through signature properties in Adobe Acrobat Reader. Timestamping is used to prove that
document was signed before the time specified by timestamp token. If the signature is not
timestamped then the signature time specified in the signature properties is not considered to be
“safe”. It is strongly advised to apply timestamp to a signature, and TSA module can be used for this

purpose.

Also CRL or OCSP Response of the signer's certificate can be embedded inside the signature
package. Embedding CRL or OCSP response with the package will help validate signature even
after the signer's certificate is expired. (Though it will not totally guarantee the long term signature
preservation. Topic of long term signature preservation for archival purposes is a large one and is
discussed to be implemented in future versions of SignServer).

PDF signing requests are served through a http service at the URL:
'http://<host name>/signserver/process?workerld=<worker Id>'

If no 'worker Id' parameter is specified then will the id of 1 be used as default.
The PDF signer requires a signing keystore with a signing certificate.

7.2.3.2 Available Properties

The following properties can be configured with the signer:

REASON =

Sidnr / Page no

SignServer, Manual 24 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

The reason included in the PDF signature and displayed by the PDF reader. Default
value is “Signed by SignServer”.

LOCATION=
The location included in the PDF signature and displayed by the PDF reader. Default
value is “SignServer”.

ADD VISIBLE SIGNATURE =
Setting that control whether signature to be added should be visible or invisible.
Possible values : True or False. Default is "False"

VISIBLE SIGNATURE_PAGE =
Specifies the page on which the visible signature will be drawn. This property is
ignored if ADD VISIBLE SIGNATURE is set to False.

Possible values :
"First" : signature drawn on first page of the document,
"Last" : signature drawn on last page of the document,
page number : signature is drawn on a page specified by numeric argument. If
specified page number exceeds page count of the document ,signature is drawn on
last page. If page number specified is not numeric (or negative number) the
signature will be drawn on first page

Default value is "First".

VISIBLE SIGNATURE _RECTANGLE=

Specifies the rectangle signature is going to be drawn in. This property is
ignored if ADD VISIBLE SIGNATURE is set to False. Format is :
(1ix,lly,urx,ury).

Here :
lIx =left lower x coordinate,
lly=left lower y coordinate,
urx =upper right x coordinate,
ury = upper right y coordinate

Default value is "400,700,500,800".

VISIBLE SIGNATURE_CUSTOM IMAGE _BASE64 &
VISIBLE SIGNATURE CUSTOM IMAGE _PATH =

If we want the visible signature to contain custom image , specify image as base64
encoded byte array. Alternatively custom image can be specified by giving a path to image
on file system.

Sidnr / Page no
SignServer, Manual 25 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Note : if specifying a path to an image "\" should be escaped (thus C:\photo.jpg =>
"C:\\photo.jpg")

Note : if specifying image as base64 encoded byte array "=" should be escaped (this
"BBCXMI=="=>"BBCXMI\=\=")

If both of these properties are set then
VISIBLE SIGNATURE CUSTOM IMAGE BASE64 will take priority.

If we do not want this feature then do not set these properties.

Default is not set (no custom image).
These properties are ignored if ADD VISIBLE SIGNATURE is set to False.

NOTE: in clustered environment it is more manageable and advised to specify image as
base64 string, since image data will be stored in central database. Otherwise each node
should contain copy of the image, and each image managed separately (ex : on image
updates, or insertion of new image for different worker).

VISIBLE SIGNATURE_CUSTOM _IMAGE_SCALE TO RECTANGLE=

If we want our custom image to be resized to specified rectangle (set by
VISIBLE SIGNATURE RECTANGLE) then set to True. If set to True image might look
different that original (as an effect of resizing). If set to False the rectangle drawn will be
resized to specified image's sizes.

If set to False lIx and lly coordinates specified by VISIBLE SIGNATURE RECTANGLE
property will be used for drawing rectangle (urx and ury will be calculated from specified
image's size).

This property is ignored if ADD VISIBLE SIGNATURE is set to False or if custom image
to use is not specified.

Possible values : True, False. Default value is True.
TSA _URL=
If we want to timestamp document signature, specify timestamp authority url. If we

do not want to timestamp document signature , do not set property.

Note : if path contains characters "\" or "=" , these characters should be escaped (thus "\" =
n\\n, n_n =>n\=n)

Default is not set (no timestamping).

Sidnr / Page no
SignServer, Manual 26 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

TSA USERNAME & TSA PASSWORD=

If tsa requires authentication for timestamping , specify username and password. If
tsa does not require authentication, do not set these properties. These properties are ignored
if TSA_URL is not set (no timestamping).

Default value is not set (tsa does not require authentication).

EMBED CRL=
If we want to embedd the crl for signer certificate inside the signature package set to
True, otherwise set to False.

Default value is False
EMBED _OCSP_RESPONSE=

If we want to embedd the ocsp responce for signer certificate inside the signature
package set to True, otherwise set to False.

Note : issuer certificate (of signing certificate) should be in certificate chain.

Default value is False.

Sidnr / Page no
SignServer, Manual 27 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.24 ODF Sgner

7.2.4.1 Overview

ODF Signer, which stands for Open Document Format Signer is a plug-in to SignServer that applies
server side signature to documents in ODF format. It has been tested with Open Office 3.1.

ODF Signer supports only “invisible” signatures, that is unlike PDF signer there's no
pictorial representation of the digital signature. When you open signed document in Open Office
you can verify signature using toolbars, or the notifier in status bar (red mark), which notifies user
that the document is digitally signed.

7.2.4.2 Available Properties

Other than standard worker properties, ODF Signer does not have any other custom ODF
signer specific properties.

7.25 OOXML Sgner

7.2.5.1 Overview

OOXML Signer, which stands for Open Office XML Signer is a plug-in to SignServer that applies
server side signature to documents in OOXML format. It has been tested with MS Office 2007.

Currently OOXML Signer supports only “invisible” signatures , that is unlike PDF signer
there's no pictorial representation of the digital signature. When you open signed document in MS
Office you can verify signature using toolbars, or the notifier in status bar (red mark), which notifies
user that the document is digitally signed.

7.2.5.2 Available Properties

Other than standard worker properties, OOXML Signer does not have any other custom
OOXML signer specific properties.

NOTE : In later versions of OOXML Signer it is planned to add support for visible signatures and
custom signature image.

Sidnr / Page no
SignServer, Manual 28 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.3 SignServer Validation Service Framework

The validation service framework is used to validate certificates from one or more issuers. It can be
used to have one central point of performing revokation statuses to simplify the integration of
external PKIs within an enterprise.

The validation service framework also provides a validation cache that can be used to increase
performance for those cases a application does multiple lookups of the same certificate within a
short period of time.

Out-of-the-Box there exists a DefaultValidationService that should satisfy most use cases but it's
possible to develop a custom ValidationService if necessary. See the developer section for more
details.

All Validation Services is configured by specifying the
org.signserver.validationservice.server.ValidationServiceWorker in the global
configuration, then is the actual ValidationService configured in the worker configuration setting
the class path in the property TYpE (Not necessary for the DefaultValidationService).

The validation service framework is mostly used with X509v3 certificates but other kinds of
certificates is supported as well by design.

Another concept in the Validation Service Framework is that the client also can ask the service to
check the type of certificate that the certificate might be used for. A certificate type could be
IDENTIFICATION or ELECTRONIC SIGNATURE.

7.3.1 DefaultValidationService

7.3.1.1 Overview

The default validation service have a set of Validators. A validator is responsible to checking the
validity against one or more issuers using for example CRL check or OCSP/XKMS lookup or just
by checking some database. Currently there are no ready to use validators, these remain to be
developed in future versions of the SignServer.

The Default Validation Service supports validations to be cached for some or all issuers for a
specified amount of time.

If not configured otherwise will the validation service use the DefaultX509CertTypeChecker that
determines the certificate type from the key usage in the certificate. Key Encipherment and Digital
Signature indicates a IDENTIFICATION type and Non-reputation indicates ELECTRONIC
SIGNATURE.

Sidnr / Page no
SignServer, Manual 29 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

There exists a validation specific WebService that can be used for platform independent client calls.
The WebService must be enabled during the build and isn't by default. The WebService WSDL file
is located at the URL http://<hostname>:8080/signserver/validationws/validationws?
wsdl and it contains two calls one is 'isValid' that performs the validation check and the other is a
getStatus call that checks the health of the node and its underlying systems. The last calls can be
used by clients for monitoring or implementing redundancy.

Important, Due to class path conflict in JBoss 4.2.x own JBoss WebService stack and the JAX-WS
stack used by the SignServer must the JBoss WebService stack be removed before the WebService
is used. This is done by going to JBOSS HOME/server/default/deploy and remove the directory
jbossws.sar.

7.3.1.2 Auvailable Properties

The following properties can be configured with the default validation service:

The validation service have three types of properties, general properties (that applies for the service
and all configured validators), validator properties (that only applies for a specific validator) and
issuer properties (that only applies for an issuer configured in a specific validator).

General Properties:

CACHEDISSUERS = A''; separated list of issuer names (usually issuer DNs) (Optional,
no validation is cached if unset.)

CERTTYPECHECKER = Certificate type checker that should be used to determine the type

of certificate (Optional, default is
org.signserver.validationservice.server.DefaultX509CertTypeChecker)

TIMEINCACHE = Time in seconds a certificates validation should be cached (Optional,
default is 10 seconds)

Validator properties:

Validator properties is specified with the prefix of 'validator<validatorId>.' or
'val<validatorId>.' were validator Id should be an integer between 1 and 255. For instance, to
specify the type of a validator with an id of 1 then specify
'vall.classpath=some.classpath.SomeClass'. This validator will be initialized with all its validator
specific properties (with 'val<id>.' prefix removed) as well as the general ones.

CLASSPATH = Class path to the validator that should be used. (Required for each
configured validator)

http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl

Sidnr / Page no
SignServer, Manual 30 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Issuer properties: Issuer properties are specified as 'val<val id>.issuer<issuer id>.<property>' were
issuer id is a positive integer between 1 and 255. All generic and validator specific properties (with
the given validator id) will also be propagated to the specific issuer configuration.

CERTCHAIN = The certificate path of the CA certificates used to verify the certificate.
Should be a appended BASE64 string. (Required for each configured issuer).

Here is an example configuration of a validation service to clarify things even further

Set up the worker -> validation service wrapper

GLOB.WORKER1 .CLASSPATH= org.signserver.validationservice
.server.ValidationServiceWorker

#Uncomment and set class path to custom validation service, othervise is default
#used.

#WORKER1 .TYPE=

Name of Service (Optional)
WORKER1.NAME=ValidationServicel

Define TestCA2 and TestCA3 as a cached for 15 seconds, TestCAl is Not cached.
WORKER1 .CACHEDISSUERS=CN=TestCA2;CN=TestCA3
WORKER1.TIMEINCACHE=15

Define a validator in charge of issuer TestCAl and TestCA2
WORKER1.VAL1l.CLASSPATH=<Class path to some validator>
WORKER1.VAL1.ISSUER]1.CERTCHAIN=EFWAASDFADFASDFKASDKFW1231.....
WORKER1.VAL1.ISSUER2.CERTCHAIN=EFWAASDFADFASDFKASDKFW1231.....

Define a validator in charge of issuer TestCA3
WORKER1.VAL2.CLASSPATH=<Class path to some validator>
WORKER1.VAL2.ISSUER].CERTCHAIN=EFWAASDFADFASDFKASDKFW1231.....

Sidnr / Page no
SignServer, Manual 31 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.3.2 The Validation CLI interface.

There exists a Java CLI tool that can be used to check the validity of a certificate from scripts. It
supports a clustered SignServer installation by using the “Use first host that response OK” policy.

When compiling, make sure that setting validationclient.enabled is set to “true” in the build
properties. The client is found in dist-client/validationclient. Just copy the validate.jar and all the
files in the 'lib' directory to the location where you want to use the client.

Use the client with 'java -jar validate.jar <options>'.

Here is a list of available options:

-cert <cert-file> : Path to certificate file (DER or PEM) (Required).

-certpurposes <certpurposes> : A", separated string containing requested certificate
purposes.

-der : Certificate is in DER format.

-help : Display this info

-hosts <hosts> : A", separated string containing the hostnames of the

validation service nodes. Ex
'host1.someorg.org,host2.someorg.org' (Required)

-pem : Certificate is in PEM format (Default).

-port <port> : Remote port of service (Default is 8080 or 8442 for SSL).

-service <service-name> : The name or id of the validation service to process request.
(Required)

-silent : Don't produce any output, only return value.

-truststore <jks-file> : Path to JKS truststore containing trusted CA for SSL Server
certificates.(for HTTPS connections)

-truststorepwd <password> : Password to unlock the truststore.

The following return values is used:

: Error happened during execution
: Bad arguments

: Certificate is wvalid

: Certificate is revoked

: Certificate is not yet valid

: Certificate have expired

: Certificate doesn't verify

: CA Certificate have been revoked
: CA Certificate is not yet valid
: CA Certificate have expired.

: Certificate have no valid certificate purpose.

[
OJourd WNhRERORDN

Sidnr / Page no
SignServer, Manual 32 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

7.4 SignServer Group Key Service Framework

7.4.0.1 Overview

The group key service framework is used to manage and distribute group keys to clients in an
organisation. The keys can be generated on demand or pre-generated at times when the system is not
utilized a lot. The group keys can be both symmetric and asymmetric but one service can only
distribute one type of key. If several kinds of keys are required should multiple services be set up
within the same server.

The group keys are stored encrypted in database. The encryption key can be configured to be
switched automatically after a defined number of encryptions to avoid overexposure of the
cryptographic data. It is also possible to switch the encryption key manually.

The Framework requires an ExtendedCryptoToken, the difference are that the extended token have
additional support for key export and symmetric key operations.

The Group Key Service have CLI commands for administration of the service such as pre-generate
keys, manual switch of encryption key and removal of group keys.

The communication to the group key service is mainly done through the main Web Service
interface. But other ways of communicating with the server might come in the future.

Authorization to group keys is very important and therefore should a special plug-in be developed
that looks up which clients that should have access to a specific group key which fit into the
organisation needs. See the authorization chapter of how to develop a customized authorization
plug-in.

The basic configuration of a group key service is very similar to that of a validation service. Two
entries is required in the global configuration. The first is the class path for the Worker to
GroupKeyService wrapper, then a class path reference to the extended crypto token used with the
service. If not the default group key service should be used it is possible to define a custom one by
specifying its class path in the TYPE worker property.

7.4.0.2 Available Properties

USEPREGENERATION = Setting defining of keys should be pre-generated or generated
on the fly when needed. If the pool of pre-generated keys gets empty will new keys always
be generated automatically. (Optional, default is true)

ENCKEYALG = Encryption algorithm used to encrypt the group keys stored in database.
(Optional, default is “AES”)

ENCKEYSPEC = Specification of the encryption key. (Optional, default is “256”)

Sidnr / Page no
SignServer, Manual 33 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

GROUPKEYALG = Defines the type of group keys that this service should generate
(Optional, default is “AES”)

GROUPKEYSPEC = Specification of the generated group keys. (Optional, default is “256”)

KEYSWITCHTHRESHOLD = Setting defining the number of group keys that should be
encrypted by the same encryption key before it's switched. (Optional, default is 100000)

7.5 Mail Processors

This section lists the available plug-ins for the MailSigner. These plug-ins are configured in the
exact same way with class path of both plug-in and its crypto token.

7.5.1 SmpleMailSgner

Important, From 3.1 must the SimpleMailSigner module be uploaded to the MailSigner before it
can be used. This is done with the command:
'bin/signserver.sh module add dist-server/simplemailsigner.mar

7.5.1.1 Overview

The SimpleMailSigner is a plug-in that generates a signed SMIME message from any authorized
mail sent through the MailSigner server. It can be used prove the origin of the message to the
receivers .

There exists a demo configuration in the 'sample-configs' directory.

7.5.1.2 Available Properties

EXPLAINATIONTEXT = Text attached to the e-mail describing the signature for the
recipient. (Optional)

USEREBUILDFROM = Setting indicating if the from field of the SMIME should be
altered. (Optional, default is true)

SIGNATUREALG = Setting configuring the signature algorithm that should be used in the
SMIME message. (Optional, default is DIGEST SHAT1)

POSTMASTERSIGNS = Indicates if postmaster mail should be signed. (Optional, default
is false)

Sidnr / Page no

SignServer, Manual 34 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

FROMADDRESS = The from email address used if rebuild from is set. (Required if
USEREBUILDFROM is true)

FROMNAME = Readable name used in from address field. (Optional)

CHANGEREPLYTO = Indicates if the reply-to field should be altered to the original
sender. (Optional, default is false)

REPLYTOADDRESS = The reply to email address if the reply always should be changed to
a default address. (Required if CHANGEREPLYTO is true)

REPLYTONAME = Readable name used in reply-to address field. (Optional)
SIGNERADDRESS = The email address that should be in the sender field. (Required)
SIGNERNAME = Readable name used in sender address field. (Optional)

REQUIRESMTPAUTH = Setting defining if SMTP AUTH should be required to
sign the mail. (Default is true).

Sidnr / Page no
SignServer, Manual 35 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

8 Available CryptoTokens

There exists four types of crypto tokens (Formerly known as sign tokens), two for storing the keys
in software, one general for communicating with cryptographic hardware through the PKCS11
interface and one for SmartCards. See the developer section for information about developing
support for other HSMs.

8.1 PI12CryptoToken

The P12CryptoToken signer have the class path:
org.signserver.server.cryptotokens.P12CryptoToken

8.1.1 Overview
A CryptoToken using a PKCS 12 key-store in the file-system. Can only contain one signing key.

In a clustered environment must the key store be at the same location at all nodes.

The P12CryptoToken, doesn't support the destroyKey() method

8.1.2 Available Properties
KEYSTOREPATH : The full path to the key-store to load. (required)

KEYSTOREPASSWORD : The password that locks the key-store. Used for automatic
activation.

8.2 PrimeCardHSMCryptoToken

8.2.1 Overview

Using PrimeCardHSM it's possible to use a SmartCard to generate 2048-bit RSA signatures. The
SmartCard can perform about one signature a second. PrimeCardHSM is proprietary software by
PrimeKey Solutions AB.

PrimeCardHSM requires PCSCD software and SmartCard drivers. See separate documentation
about installing PrimeCardHSM.

The PrimeCardHSMCryptoToken, doesn't support the destroyKey() method.

The PrimeCardHSMCryptoToken signer have the class path:
org.signserver.server.cryptotokens.PrimeCardHSMCryptoToken

8.2.2 Available Properties
DEFAULTKEY = Hash value of the signing key on the card. See PrimeCardHSM
documentation for more information.(Required)

Sidnr / Page no
SignServer, Manual 36 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

AUTHCODE = Authentication code for automatic activation (Optional).

8.3 PKCSI1ICryptoToken

8.3.1 Overview
Using PKCS11 it's possible to use a HSM that has a PKCS11 module, such as Utimaco, nCipher or
Eracom.

The PKCS11CryptoToken have the class path:
org.signserver.server.cryptotokens. PKCS11CryptoToken

8.3.2 Available Properties
DEFAULTKEY = Hash value of the signing key on the card. (Required)

PIN = Authentication code for activation. (Required)
SHAREDLIBRARY = Full path to the library containing the PKCS11 interface. (Required)

SLOT = Slot to use (Required)

8.3.3 Example usage

Edit gs_pdfsigner configuration.properties and choose the sign token setting for the PKCS11 sign
token. Run the following command to set up a PDF signer using the PKCS11 properties configured:
bin/signserver.sh setproperties qs_pdfsigner configuration.properties

You also need a certificate for the signer. Generate a certificate request with the command:
bin/signserver.sh generatecertreq 8 "CN=PKCS11 Signer token" SHAIWithRSA /tmp/certreq.pem

Add a user in EJBCA with a certificate profile suitable for signing, and enrol for a “Server
Certificate” using the public web pages.

Create the certificate chain file with the command:
cat /tmp/cert.pem /tmp/AdminCA1.pem > /tmp/certchain.pem

The signer certificate must be first, and the root CA certificate last.

Upload the signing certificate chain to the signer using the command:
bin/signserver.sh uploadsignercertificatechain 8 GLOB /tmp/certchain.pem

After the certificate chain has been uploaded to the server, the configuration must be reloaded and
the server must be restarted. It is not sufficient to only reload the configuration.

Sidnr / Page no
SignServer, Manual 37 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

8.4 SoftCryptoToken

8.4.1 Overview

The SoftCryptoToken is a simple token managing it's own soft keys instead through a pkcs12. It can
be used for test and demonstration purposes. The keys are stored in the worker's properties and is
generated when genCertificateRequest is called. One key is used for all purposes and a new key is
generated for every certificate request.

The method destroyKey is not supported.

The SoftCryptoToken have the class path: org.signserver.server.cryptotokens.SoftCryptoToken

8.4.2 Available Properties
KEYDATA = The serialized KeyPair generated by genCertificateRequest, usually is this
setting configured by the SoftCryptoToken itself.

KEYALG = The algorithm used when generating new keys. (Optional, default is “RSA”)

KEYSPEC = The key specification used when generating new keys. (Optional, default is
“2048”)

8.4.3 Example usage

First change the global property of WORKER<ID>.CRYPTOTOKEN.CLASSPATH of the worker you want
to use the SoftCryptoToken with. After reload will an empty and inactive SoftCryptoToken be
created.

Then generate a certificate request with the command, in this step will new keys be generated
bin/signserver.sh generatecertreq <id> "CN=Soft Signer token" SHAIWithRSA /tmp/certreq.pem

Then upload the signing certificate to the worker using the command:
bin/signserver.sh uploadsignercertificatechain <id> GLOB /tmp/cert.pem

After the certificate chain has been uploaded to the server, the configuration must be reloaded and
the SoftCryptoToken will be active and ready to use.

Sidnr / Page no
SignServer, Manual 38 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

9 Setting Authorization Type
9.1 SignServer

By default is client-certificate authentication required for a signature request to be processed. This
can be changed with the AUTHTYPE property.

AUTHTYPE = NOAUTH, sets the server to not require any authentication.

AUTHTYPE = CLIENTCERT (default) requires a certificate of all the clients. The
certificates must be in the signers access control list and be trusted by the Java distribution,
i.e imported in JAVA_HOME/jre/lib/security/cacerts. Authorized clients is configured
manually using the CLI interface.

This authorization functionality doesn't work for all use cases. Then it's possible to create a
customized authorizer and specify it's class path as value in the AUTHTYPE property. The
Processable will then automatically instantiate and use it. How to develop such a plug-in is
explained in the developers section.

9.2 MailSigner

The MailSigner support SMTP Authentication which is configured in the build properties. It's then
possible to authorize users by adding them manually through the CLI interface. SMTP authorization
is global for all MailProcessors.

10 Disabling a Worker
Any Processable worker in the SignServer and MailSigner can be disabled, which means that it
won't be executed or be included in the health check.

To disable a worker set the property “DISABLED” to “TRUE”.

11 Archiving Responses (SignServer only)
If there is a need to save all generated responses, then set the property “ARCHIVE” to “TRUE” and
all generated responses for that signer will be saved to database.

The archived responses can later be extracted from data base using the CLI interface. See the CLI
section for more information.

12 Checking validity of signer certificates (SignServer only)

By default the SignServer checks if the signer certificate of a signer is valid before letting the signer
process a request. If the signers certificate is not valid an error message is returned.
There are two properties that can be set to disable this check:

Sidnr / Page no
SignServer, Manual 39 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

« CHECKCERTVALIDITY: default value is true, meaning that the validity period of the
certificate will be verified before processing. Set to false to ignore if the certificate is expired
or not yet valid.

« CHECKCERTPRIVATEKEYVALIDITY: default value is true, meaning that the validity
period in the PrivateKeyUsagePeriod of the certificate will be verified before processing.
This is only done if this extension exists (it is optional in a certificate). Set to false to ignore
the PrivateKeyUsagePeriod.

13 The Global Configuration Store

The available workers and its crypto tokens and services is configured in something called the
global configuration store that is slightly different from a worker configuration.

Is is dynamically configured and activated immediately. I can contain any type of data (in string
representation) and can be of two types, either with global scope or node scope. A Global scoped
property can be accessed by all nodes in the cluster while a Node scoped property in only used
within a node and cannot be accessed by the other nodes.

13.1 SignServer specific

Database failure is handled differently. If a node looses connection to the database it put itself in a
state called 'unsynchronised' and will continue its operation without storing the data to database by
using a cached global configuration. It is possible to later resynchronise one nodes cached global
configuration data with the database with a CLI command called 'resync'. But it is only possible to
sync one of the nodes global configuration to the database.

13.2 MailSigner Specific

The MailSigner doesn't store its data in database but in a regular file handled internally. It have
therefore no functionality for database fail-over and cannot be resynchronized. There currently aren't
any difference in global and node scoped variables.

Sidnr / Page no
SignServer, Manual 40 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

14 Timed Services

A Timed Service (formerly called just service) is a task that is run on a timely basis, performing
maintenance tasks like changing active key, or it could generate a report.

Currently isn't the SignServer shipped with any services out of the box, but read the developer
section about how to write custom services. The MailSigner although have a timed service that
checks if a Mail Processor have an expiring certificate and sends e-mail notifications about this to
the administrators.

A Timed Service framework supports a couple basic properties that is used to calculate when and
how a timed service should run. These properties are:

ACTIVE = “TRUE” if the service should be run, otherwise it is disabled.

SINGLETON = “TRUE” if the service only should be run on one of the nodes in the cluster
at the time. If it's not set or set to FALSE is the service run simultaneously on all nodes in
the cluster. If the node running a singleton service fails will another node sense this and start
up the service. (Not used for the MailSigner)

INTERVAL = Property that should define the interval i seconds the service should run.

CRON= Property that should define a CRON expression of how often the service should
run. It should conform to Unix CRON standard. (One of INTERVAL or CRON is required)

14.1 CertificateExpireTimedService (MailSigner only)

14.1.1 Overview

The CertificateExpireTimedService is a timed service specific for the MailSigner. It checks all
available mail processors if they have a certificate about to expire. In that case a notification about
this is sent to the administrators. By default is this done 30 days before expiration. If the Mail
Processor isn't updated a reminder message is sent.

The CertificateExpireTimedService have the class path: org.signserver.mailsigner.module.common.
CertificateExpireTimedService and is compiled into a the dist-server/mailsigner-module-
common.jar that can be included in MAR files that needs the service.

14.1.2 Available Properties

EXPIRETIMEDAYS = Number of remaining days of the certificate before a notification is
sent.(Optional, default 30 days).

Sidnr / Page no
SignServer, Manual 41 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

REMINDERTIMEDAYS = Number of remaining days of the certificate before a reminder
notification is sent.(Optional, default 10 days).

ADMINEMAIL = The email address of were the notifications is sent. (Optional, default is
the configured postmaster address.)

FROMEMAIL = The from email used in the notifications is sent. (Optional, default is
certexpire(@<postmaster-domain>)

MESSAGESUBJECT = The subject used in the first notification message. (Optional,
default is "WARNING: Mail Processor with id : ${WORKERID} is about to
expire.")

REMINDERSUBJECT = The subject used in the reminder notification message.
«)pﬁonah(kﬁhuhis"REMINDER: Mail Processor with id : ${WORKERID} is about
to expire.")

EXPIREMESSAGE = The message body in the notifications is sent. (Optional, default is
"A mail processor at host ${HOSTNAME} have a certificate about to expire.$
{NL}${NL}The Mail Processor have id ${WORKERID} and a certificate with DN

'S{cert.CERTSUBJECTDN}"' and will expire the ${cert.EXPIREDATE}. ${NL}")

REMINDERMESSAGE = The message body in the remainder notifications is sent.

(Optional, defaultis "This is a reminder that a mail processor at host $
{HOSTNAME} have a certificate about to expire.${NL}${NL}The Mail Processor
have id ${WORKERID} and a certificate with DN '${cert.CERTSURJECTDN}' and

will expire the ${cert.EXPIREDATE}. ${NL}")

14.1.3 Available SQubstitution Variables

The following substitution variables can be used in notification subject and message bodys.

${NL} = New line

${DATE} = The current date

${HOSTNAME} = Name of the host running the application.
${WORKERID;} = 1d of the worker.

${WORKERNAME} = Name of the worker.

${cert. CERTSERIAL} = The serial number of the certificate about to expire.
${cert EXPIREDATE} = The certificates expiration date.

${cert. CERTSUBJECTDN} = The certificate subject DN.

${cert. CERTISSUERDN} = The certificate issuer DN.

Sidnr / Page no
SignServer, Manual 42 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

15 The Main WebService Interface
15.1 Overview

New to version 3.0 is the Main WebService interface. It replaces the RMI-SSL interface in version
1.0 and 2.0 for two reasons, the RMI-SSL were based on a commercial library and it only worked
for Java clients.

The WebService interface have two calls, the main one is "process' which takes a collection of
process request to a processable worker and returns a collection of process responses, the second
one is getStatus that performs a health check of the node and returns an OK message if the node is
healthy.

The WebService stack used is the JAX-WS stack from SUN. And the actual process data is a
externalized Base64 byte-arrays. The reason why the are externalized is to simply the integration
towards non-Java platforms. See the source of the actual request to see how the data is structured.

The getStatus call can be used to implement high-availability towards the client. The Java client
API described in the next section have built in support for different high availability policies.

The WebService WSDL file is located at the URL

http://<hostname>:8080/signserver/signserverws/signserverws?wsdl
It's possible to turn off the WebService interface by disabling it in the build configuration.

Important, Due to class path conflict in JBoss 4.2.x own JBoss WebService stack and the JAX-WS
stack used by the SignServer must the JBoss WebService stack be removed before the WebService
is used. This is done by going to JBOSS HOME/server/default/deploy and remove the directory
jbossws.sar.

15.2 Java Client API

Built along with the WebService is a Java API that can be used by clients. It's located in dist-
client/signserverwscli and the file signserverws.jar and all the files in the lib directory is required to
use the API. The client API have support for different high availability policies to avoid the need for
load balance hardware.

The client classes is in the package org.signserver.protocol.ws.client and the main code are
SignServerWSClientFactory creating a client using the specified load balance policy, it returns a
ISignServerWSClient that is used to perform the actual process requests.

http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl
http://localhost:8080/signserver/validationws/validationws?wsdl

Sidnr / Page no
SignServer, Manual 43 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

15.2.1 Load Balance Policies

With version 3.0 is one load balance policy defined and it's called 'cal1FirstNodeWithStatusOK'
it calls the getStatus method on all the server nodes in the cluster simultaneously and the first node
to respond OK it sends its process request to. This to ensure that only one node in the cluster
actually performs the signing.

Other future load balance policies could be round robin or that all nodes are called with the requests
simultaneously and the first response is used.

15.2.2 CLI Client

Along with the Java Client API is also a CLI utility provided, used mainly for testing but could in
some cases be used for scripting as well. Its located in the dist-client/signserverwscli and all the files
in the directory and 'lib' subdirectory is required. First edit the file wsclient.properties, there it's
possible to define connection properties such as hosts, ports, SSL usage, load balance policy and so
on. It is also possible to define the classes used for request generation, what type of request that
should be generated and how the response should be analysed. Default is just dummy requests sent
to the DummySigner used to test WebService connectivity.

Below is the syntax of the CLI command and can be used to perform continuous requests with a
specified rate with a multiple number of concurrent requesting threads. This can be used to test
performance of an implemented worker and for stress testing.

Usage:
wsclient <signer Id or Name> <number of requests> <milliseconds between reques
t> <number of threads> <random wait>
Where:
Signer id or name to send requests to, (required parameter)
Number of requests is for each thread (default is 'l'), use 'c' or 'continuo
us' for infinite number of requests.
Minimum milliseconds between requests is the least time the client waits bef
ore issuing the next (default is '1000').
Number of threads that will send concurrent requests (default is '1'").
Random wait in milliseconds, used for more random test behaviour and is adde
d to the fixed wait time (default is '0'").

The client requires a configuration file 'wsclient.properties' to exist in the
same directory as the wscli, see the configuration file for more details.

Sidnr / Page no
SignServer, Manual 44 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

16 The Cluster Class Loader

Important, this feature is very new in version 3.1 and should still be considered experimental.

New to SignServer 3.1.x is the Cluster Class Loader. Simplifying the management of code in
clusters. Instead of manually having to synchronize all the required JAR files to all nodes, it is
possible to upload the code once and it will be accessible to all nodes in the cluster directly without
having to restart the cluster. This is archived by storing the JAR resource data (such as class files) in
database instead of in the application server class path.

Each worker will have their own Cluster Class Loader instance that will be reinitialized upon
reload.

It is also possible to run multiple code versions of a worker simultaneously in a cluster, something
that haven't been possible until now since only one version of class can exists in one JVM. This is a
great feature for migration purposes where you have an old worker that is known to be stable, then it
is possible to upload a new module beside the old one, with newer code, and migrate calling clients
one by one. Under the hood is actually a version prefix appended on the fly to the class name by the
Cluster Class Loader when converting the byte code into a class. For example a class called
somepkg.SomeWorker with version 3 will be called v3.somepkg.SomeWorker internally in the
JVM. A developer should have to thing about this when developing his module but it might cause
problems when remotely debugging the SignServer since the IDE won't find the source class to the
modified code. If remote debugging is going to be used should class versioning be turned off.

To improve the security of the code stored in database it is possible to enforce signature verification
of all the uploaded code. This is a good feature if the database is in a different security zone or
managed by different administrator than the SignServer nodes itself. If verification is turned on will
the Cluster Class Loader check that the class is signed with a certificate issued by issuers stored in a
specific trust key store for this purpose. Important, make sure the v the code signing certificate and
it's issuers have a validity long enough to avoid production stop since the signature will not verify
after the certificate have expired. The code is signed by a separate JKS key store when the module
is uploaded to a cluster. The code signing certificate must have the extended key usage 'code
signing' in order for the Cluster Class Loader to verify it.

Before code can be uploaded to the Cluster Class Loader must it's JAR files be packaged in
something called a Module Archive (MAR). See section 15.2 for details about generating a MAR
file.

Sidnr / Page no
SignServer, Manual 45 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

16.1 How to configure your worker to use the Cluster Class Loader

To enable the use of the Cluster Class Loader in a worker must the module name (and optionally
version) be specified in the worker properties. If the version isn't specified will the latest be used.

Note: These two settings is set automatically if the workers is configured using property files
included in a MAR file.

Cluster Class Loader Related Properties
Property Description

MODULENAME Which module that should be used by
the cluster class loader. (Required if the Cluster
Class Loader should be used)

MODULEVERSION Indicating which module version that should be
used by the cluster class loader for the given
worker. If no module version is specified will
the latest available version be used. (Optional)

16.2 Building Module Archives

A 'Module Archive' is a package containing all the jars required by the module along with a
descriptor with information about the name of the module and it's version. A module archive is
uploaded once and is then accessible for all the nodes in the cluster. A module archive can also have
multiple parts indicating where in the system the code should be uploaded. In 3.1.x is only one part
called 'server' supported, but in the future will other parts such as 'admin' exist. In that case will the
code that should be executed on the server, such as worker code, be sent to the cluster, while the
administrative part of the code is only sent to the node with an administrative web interface.

A 'Module Archive' have the postfix '.mar' and is managed with the CLI interface using the 'module’
commands.

16.2.1 The MAR Descriptor

Every Module archive should have a descriptor file in it's META-INF directory. It follows the
JAVA Properties notation and is used to specify general information about the module such as
version and name of the module. This file is generated automatically when using the ANT tasks.

Sidnr / Page no
SignServer, Manual 46 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

The MAR descriptor supports the following properties:

MAR descriptor Properties

Property Description
version The version of the module archive, can only
contain digits. If not set will “1” be used.
(Optional)
modulename The name of the module, if not set will the MAR

file name be used, but without .mar'. The name
will always be converted to upper case.
(Optional)

default-description The default description of all the resources in the
module (Optional)

parts The parts in the module archive, if not set will
only the 'server' part be used. (Optional)

16.2.2 Including Worker Configurations

It is also possible to include a set of worker configurations in the 'server' part of the module archive,
these settings is configured directly after all the JAR files have been uploaded. These worker
configurations should be property files that follows the same notation as if they where used with the
'setproperties' CLI command.

By default it should be named 'part-config.properties' and be in the 'server' part directory. It is also
possible to have multiple configurations that is used depending on the environment the SignServer
cluster is used. For instance it is possible to have one configuration file for test, another for
production and a third for development. This makes it easy to manage the module since exactly the
same file will be used in all environments. In case of multiple configurations should every property
file be named '<environment>-part-config.properties', for instance test-part-config.properties. Later
when the module is uploaded and the environment 'test' is specified will the test configuration be
used.

Important, if a part-config.properties file is included in the MAR file will the worker properties
MODULENAME and MODULEVERION automatically the be set to all workers defined in the
configuration file and there is no need to manually define these settings.

16.2.3 Using ANT

The simplest way to build a Module Archive is by using ANT. The SignServer have provided two
ant tasks to do this.

Sidnr / Page no
SignServer, Manual 47 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

All that is required to use these tasks is to add the following two lines in your target:

<taskdef name="mar" classname="org.signserver.anttasks.MarAntTask"
classpathref="signserver.test.compile.classpath"/>

<taskdef name="part" classname="org.signserver.anttasks.PartAntTask"
classpathref="signserver.test.compile.classpath"/>

With these two lines included you will have access the the 'mar' and "part' tasks. The tasks have the
following properties.
MAR Task Properties

Property Description
version The version of the module archive, can only
contain digits. If not set will “1” be used.
(Optional)
modulename The name of the module, if not set will the

destfile property be used, but only the file name
without ".mar'. Will always be converted to
upper case. (Optional)

description The default description of the module that is set
in the MAR descriptor.(Optional)

destfile The path and file name of the mar file to
generate. (Required)

verbose Set to true if verbose output should be done
during execution.(Optional)

part One or more 'part' tasks is required in order to
generate a MAR file. (Required)

PART Task Properties
Property Description

name The name of the part, if not set will the default
'server' (and the only part supported in 3.1.x) be
used. (Optional)

fileset One or more 'filesets' are required containing
JAR file or worker configurations. (Required)

Sidnr / Page no
SignServer, Manual 48 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Here is an example of a simple ANT task building a MAR file, it will have the module name of
SOME, version of 3 and have a 'server' part with all the JARs in 'somejarlocation' and all the worker
properties in the directory 'someworkerpropertieslocation' :

<target name="gensomemar" depends="signserver.ear”>
<taskdef name="mar" classname="org.signserver.anttasks.MarAntTask"
classpathref="signserver.test.compile.classpath"/>
<taskdef name="part" classname="org.signserver.anttasks.PartAntTask"
classpathref="signserver.test.compile.classpath"/>
<mar version="3" destfile="dist/some.mar" verbose="true" >
<part>
<fileset dir="${somelibrarylocation}">
<include name="*.jar"/>
</fileset>
<fileset dir="${somejarlocation}">
<include name="*.jar"/>
</fileset>
<fileset dir="${someworkerproperiteslocation}">
<include name="*.properties"/>
</fileset>
</part>
</mar>
</target>

16.2.4 Building Manually

A Module Archive is just like a JAR or EAR file basically a ZIP with a certain file structure. And it
is quite easy to create one manually if the ANT task cannot be used. The following rules should be
followed when creating a MAR file:

e The module descriptor file should be in META-INF/mar-descriptor.properties. If other than
just the 'server' part is used, then it is important that the 'parts' property is set correctly.

e Every part should have a directory with the same name as the part containing all the JAR
files and worker configuration files. In 3.1.x is only one part supported and it should be
named 'server'. No subdirectories should exists in the parts directory.

16.2.5 Managing Module Archives

Managing of MAR files is done using the CLI command 'signserver.sh/.cmd module' it have three
subcommands: add, remove and list. See chapter 17.2.5 for more details.

Here is an example usage of adding a module to a SignServer:
'oin/signserver.sh module add dist-server/tsa.mar demo'

This will load the Time-Stamp Authority module with the demo environment, this requires that the
mar file have a file called demo-part-config.properties in the server directory.

Uppgjort / Auhtor
Philip Vendil
Godkand / Authorized

SignServer, Manual 49 (76)
Sekretess / Confidentiality
UNRESTRICTED
Datum Date Version
29/09/09 3.1.3

Sidnr / Page no

16.2.6 Changing the default configuration of the Cluster Class Loader

When enabled, the default configuration of the Cluster Class Loader is to support multiple versions
but not requiring signature verification. This behaviour can be changed in the
signserver build.properties file under the 'Cluster Class Loader Configurations' section.

The following properties can be set:

SignServer Build Properties

Property

useclusterclassloader

clusterclassloader.useclassversions

clusterclassloader.requiresignature

Description

Set to true to enable the use of the cluster class
loader. Default is true.

Indicates if multiple versions of the same worker
code should be supported. Default true. Turn this
of if remote debugging should be used.

Set to true if signing of resource data should be
required. Default false

clusterclassloader.pathtotruststore

clusterclassloader.truststorepwd

Path to the JKS trust store

containing all CA certificates that is trusted for
signing of resource data.

Only required if signature verification is used.

Password to unlock the trust store. Only required
if signature verification is used.

Remember to do an 'ant clean' when changing settings in the signserver build.properties

Sidnr / Page no
SignServer, Manual 50 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

17 Building and Deploying the SignServer or MailSigner

The building of the SignServer framework is configured by copying the file

signserver build.properties.sample to signserver build.properties. In this file it's possible to set
which database that is going to be used, how the web container should be configured and how many
nodes that is in the cluster. After it's configured issue the command 'ant' followed by 'ant deploy' to
send it to the application server. Currently is JBoss the only supported application server and it
requires the environment variable JBOSS HOME to be set prior to the deploy command.

How to set-up a highly available SignServer cluster is described in a separate document called
SignServer 3 0 Installation Guide.pdf that can be downloaded from http://www.signserver.org
The document describes how to set it up in a Cent OS 4.4 environment with two service nodes and
one management node, but should be rather easy to adjust to other platforms.

Building the MailSigner is very similar to the SignServer. Just set the property 'build.mode' to
'MAILSIGNER' in the top of the build configuration file and set the required settings (such as DNS
servers) in the bottom of the file. Then build the MailSigner with the command 'ant'.

To start up the MailSigner application issue the command 'ant run'. If you want to debug the
application in a IDE such as Eclipse issue the command 'ant debug'. This can be very helpful when
developing MailProcessors. In Eclipse create a 'Remote Java Application' debug configuration and
have it to connect to port 8000, then set a break point in your code and it will stop there the next
time the MailSigner enters that state.

Since the MailSigner is built upon the JAMES SMTP server it is possible to configure the SMTP
server more than is available in the build configuration file. This is done in the file
extapps/james/apps/james/SAR-INF/config.xml, see the JAMES documentation for more
information about what is possible and how to do it.

Sidnr / Page no
SignServer, Manual 51 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

18 Administrating the SignServer

The SignServer and the MailSigner is administrated using a common CLI interface located in
bin/signserver.sh/cmd. Most of the commands work in the same way for both build.

Every worker is identified by a id and optionally a name that can be used in all the CLI commands.

It is possible to do configuration of a worker while it's in production. All configuration commands
are cached until a reload command is issued and the configuration becomes active.

There is a special property file for the cli interface called signserver cli.properties defining which
nodes that exists in the cluster. The properties are:

hostname.masternode = Should only contain one of the nodes, specified as the default
master node. Used by operations dealing with the database and where not all nodes in the
cluster needs to be contacted. It is possible to override this setting in the CLI by using the
-host <host name> parameter.

hostname.allnodes = Should contain all the nodes in the cluster, separated by a ';'. Mainly
used by the commands getStatus, activateCryptoToken and deactivateCryptoToken.

Its possible to customize the CLI with your own code. How to do this is described in the
development section.

18.1 General Commands
These commands applies for all types of workers and works in the same way for both the
SignServer and MailSigner.

Get Status Command.:

Returns the status of the given worker, it says if its crypto token is active or not and the loaded
'active' configuration. It is possible to get a brief summary or a complete listing for one worker or all
configured workers. If all workers are displayed will also all the global configuration parameters be
displayed.

Get Configuration Command.
Returns the current worker or global configuration depending on options.

For worker configuration observe that this configuration might not have been activated yet, not until
a 'reload' command is issued.

Set Property Command.:
Sets a custom property used by the worker or crypto token, see reference for the given Worker and
CryptoToken for available properties.

Sidnr / Page no
SignServer, Manual 52 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Set Properties Command
Command used to batch a set of properties, both for the global and worker configuration.
It can be used to configure a Signer in a test environment, dump all the properties and upload it into

production.

It reads all the configuration properties form a property file and depending on the contents of the
key it sets the given property. All properties will be set according to the following defined rule set.

Rule

Properties starting with id<num>.

Properties starting with name<name>.

Property keys containing GENID<NUM>,
example WORKERGENID1 or GLOB.
WORKERGENIDI

Properties starting with glob.
Properties starting with node.

Properties starting with -<other prefix><value>

Comment

Will set the property to the value of the given id
to the worker with the given id.

Will set the property to a worker with the given
name. (If the name doesn't exists a unique id will
be generated and assigned).

The SignServer will find a free unique id and
assign substitute all GENID<num> with this id.

Will set a global property with global scope.
Will set a global property with node scope.

Will remove the property, either worker or

global.

See the directory 'sample-configs' for examples.

Remove Property Command:
Removes a configured property

Dump Properties

This tool will dump all configured properties for one or all workers in the system into a property
file. If the configuration for one worker is dumped it can be used to transfer the configuration from
one installation to another. If all configurations is dumped, it can be used as a backup tool.

Upload Certificate Command.
Used to upload the certificate when the worker only needs the actual signing certificate and not the

entire chain.

Upload Certificate Chain Command.
Used when uploading a complete certificate chain to the worker. Which command that is supposed
to be used is depending on the worker and crypto token used.

Sidnr / Page no
SignServer, Manual 53 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Generate Certificate Request Command

Used to generate a certificate request for a worker to be signed by a certificate authority. It takes
distinguished name and signature algorithm as parameters and writes the request in PEM format to
file.

Activate Cryptographic Token Command.
Used to activate hard crypto tokens. Authentication code is usually the PIN used to unlock the keys
on the HSM. Not used if the token is set to auto-activation.

Deactivate Cryptographic Token Command.:
Brings a crypto token off-line. Not used if token is set to auto-activation.

18.2 SignServer Specific Commands

18.2.1 Authorization Related

These commands are used to configure the internal client certificate authorization when it is turned
on. It controls which clients that is authorized to request a processable worker.

Add Authorized Client Command.:
Adds a client certificate to a processable workers list of acceptable clients using this worker. Specify
certificate serial number in hex and the Issuer DN of the client certificate.

Removes Authorized Certificate Command.
Removes added client certificate entries.

List Authorized Clients Commands:
Displays the current list of acceptable clients.

18.2.2 Database Related

Resynchronize Database Command.:

The 'resync' command is used after a SignServer had a complete database failure. When this
happens will the Global Configuration become in 'Off-line' mode and it's not possible for the nodes
to communicate internally and the Global Configurations will not be in sync any more. After the
database is up again can this command be sent to the node that have the most valid Global
Configuration and write it to the database. After this will the Global Configuration be in 'On-line'
mode again.

Sidnr / Page no
SignServer, Manual 54 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

18.2.3 Archive Related

This commands can be used for processable workers that have archiving turned on. They are used to
find specific archived responses. It's up to the implementation of the worker if it supports archiving
or not.

Archive Find from Archive Id Command:
Command used to extract archived data from database identified by the archive 1d.

The Id depends on the worker, in case of the TSA is the TimeStampInfo serial number used.
The data is stored with the same file name as the archive id in the specified path.

Archive Find from Request IP Command:
Used to extract all archived data requested from a specified IP address.

All data is stored as separate files with the archive id as file name in the specified path.

Archive Find from Request Certificate Command:
Used to extract all archived data requested from a client by specified it's certificates serial number
and issuer DN.

All data is stored as separate files with the archive id as file name in the specified path.

18.2.4 Group Key Service Related

These commands only applies for group key services.

Pregenerate Group Keys Command:

Command used to pregenerate a given number of group keys for a given group key service and
stores them unassigned encrypted in the database. This commands can be used to let the cluster
work on CPU insensitive key generation during low business hours.

Remove Group Keys Command:
Command used to remove group keys not used any more. A time range of when created, first used
and last fetched can be used as criteria.

Switch Encryption Key Commands:

Command used manually switch the encryption key used to secure the group keys in database.
Usually is the encryption key switched automatically but this command can be used to override this
default behaviour.

Sidnr / Page no
SignServer, Manual 55 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

18.2.5 Module Archive Related

There exists three commands for managing module archives in a cluster, they are quite
straightforward. Use the command 'signserver.sh/cmd module' command for more details.

Add Module:

The 'add' command uploads a ".mar" file to the cluster. It is possible to define in which environment
the module should be used, for instance 'production’ or 'test' but this is all depending on which
environments the module supports.

If signature verification is required by the server it is also possible to specify a path to a JKS key
store along with an alias and password to the key used.

Remove Module:
Command used to remove a specified version of a module.

List Modules:
Command to list all uploaded modules, it is also possible to see all JAR files that is included in the

modules.

18.3 MailSigner Specific Commands

Add Authorized User Command:
Command to add a SMTP authorized user to a MailSigner, it applies for all configured
MailProcessors.

Remove Authorized User Command:
Removes an authorized SMTP user.

List Authorized Users Command:
List currently authorized STMP users.

Sidnr / Page no

SignServer, Manual 56 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

19 Making the SignServer highly-available

Here are some tips on configuration used to make the SignServer redundant. Usually is the
SignServer set-up with three nodes (required minimum for MySQL cluster) where one node is a
management node from were all deployment and administration is done and the other two services
are service nodes processing the actual requests.

19.1 HTTP access requires a load balancer

HTTP based workers like the TSA can be clustered using a load balancer accessing a health check
servlet returning the state of the SignServer. The basic settings of the health check servlet can be
configured in the build configuration file but more advanced settings are done in
'src/web/healthcheck/ WEB-INF/web.xml'. With the default settings will the servlet return the text
'ALLOK' when accessing the URL
http://localhost:8080/signserver/healthcheck/signserverhealth. Ifsomething is wrong with
the sign server will an error message be sent back instead.

The health check servlet can also be used to monitor the SignServer by creating a script that
monitors the URL periodically for error messages.

Tip, heartbeat with ldirectord is a good solution for a load balancer and works well with the
SignServer. KeepAlived is another open source solution.

The Main WebService using the Java client API manages the HA parts itself and then isn't a load
balancer necessary.

19.2 Setting up a MySQL Cluster

The database backed of the SignServer can be made redundant using MySQL Cluster. Details on
how to set-up the MySQL cluster can be found in the document
SignServer 3 Installation Guide.pdf that can be downloaded from http://www.signserver.org.
More information about the MySQL Cluster can be found at
http://www.mysql.com/products/database/cluster/

19.3 MailSigner

The MailSigner have no built in support for high-availability instead are the standard SMTP
approach used where multiple server can be set up with different priority in the DNS MX records.

http://localhost:8080/signserver/healthcheck/signserverhealth
http://localhost:8080/signserver/healthcheck/signserverhealth

Sidnr / Page no
SignServer, Manual 57 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

20 Installation Packages

From version 3.1 and upwards will there be binary installation packages released alongside the
regular source packages. The packages includes all software necessary except for Java, were JDK
1.5+ is required (JRE will do for the MailSigner) before installing.

At the current moment are the platforms Linux (mainly Debian distribution is tested but it should
work for other distributions as well) and Windows XP/2003 supported. The SignServer have two
packages, one server part that should be installed in every node in the cluster and one management
package containing the CLI. The same goes for the MailSigner which is also separated into two
parts, one containing the SMTP server and the other containing the management CLI.

20.1 Using the Installation Packages

The installation package can be used either by using a GUI or on the command line by specifying
the argument '—mode text'

For an advanced set-up, for instance if many nodes should be installed with similar configuration, it
is possible to preconfigure the installation by specifying a properties file containing some or all the
properties asked during the installation. The properties will be used directly during installation and
there will be no questions about it. See each package section for details about supported properties.

The configuration file should be in the following locations:
Unix SignServer Installation : Jetc/signserver/signserver.conf
Unix MailSigner Installation : Jetc/mailsigner/mailsigner.conf
Windows SignServer Installation : %SYSTEMROOT%\signserver.conf
(i.e C:\WINDOWS\signserver.conf)
Windows MailSigner Installation : %SYSTEMROOT%\mailsigner.conf

After installation will all the settings be saved to the configuration file by the installation program to
simplify re-installation.

If all necessary properties is given in the property file, it's possible to install the package silently by
specifying '--mode unattended' on the command line.

Sidnr / Page no

SignServer, Manual 58 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

20.1.1 SgnServer Node

The server part of the SignServer package contains everything (except Java) that is needed to set-up
a node in a cluster. It contains a preconfigured version of JBoss that is ready to use.

The steps performed during the installation process are:

Unix:

By default is everything unpacked in /opt/signserver-<version> .

If a /etc/signserver/signserver.conf file exists, it's read and used during installation.

The user and group 'signserver' is created

JBoss init.d script is configured to run at runlevel 3.,4,5

Directory /etc/signserver/ is created to contain all configuration files

Database configuration file /etc/signserver/database-conf.xml is populated.

Log configuration file /etc/signserver/log-conf.xml is populated and configured to log to the

directory /var/log/signserver

e Ifno HTTP SSL certificate is specified in the configuration file will dummy key stores be
generated to /etc/signserver.

e Tomcat is configured for HTTPS and it's configuration file is placed in
/etc/signserver/webserver-conf.xml

e Finally is Jboss started and ready to be used.

Windows:

By default is everything unpacked in C:\Program\SignServer\SignServer-<version> .

If a c:\\WINDOWS\signserver.conf file exists it's read and used during installation.

JBoss is configured to be run as a service that is started automatically.

Database configuration file <INSTALLDIR>\database-conf.xml is populated.

Log configuration file <INSTALLDIR>\log-conf.xml is populated and configured to log to

the default directory <INSTALLDIR>\jboss\server\default\log

e Ifno HTTP SSL certificate is specified will dummy key stores be generated to
<INSTALLDIR>

e Tomcat is configured for HTTPS and it's configuration file is placed in
<INSTALLDIR>\webserver-conf.xml

e Finally is Jboss started and ready to be used.

Uppgjort / Auhtor
Philip Vendil
Godkand / Authorized

SignServer, Manual

Sekretess / Confidentiality
UNRESTRICTED

Datum Date

29/09/09

Sidnr / Page no
59 (76)

Version

3.1.3

The supported properties in the configuration file /etc/signserver/signserver.conf (or
%SYSTEMROOT%\signerserver.conf for windows) are:

Property Name

SIGNSERVER NODEID

database.type

Description

A unique string value (containing
alphanumeric characters only)
identifying the node in a cluster.

Type of database, currently are
Hypersonic, Mysql, Mysql

Example value

nodel

hsqldb, mysq]l,
mysqlndb, postgres,

Where to manually
reconfigure

Unix:
/etc/signserver/signserver.conf
Windows:
%Systemroot%\signserver.conf

Unix:
/etc/signserver/database-

Cluster, Postgres and MS SQL mssql2000 conf.xml
2000 supported Windows: %Installdir
% \database-conf.xml
database.hosts The hostnames of the databases | localhost Unix:
used. (not used for hsqldb). /etc/signserver/database-
conf.xml
Windows: %lInstalldir
% \database-conf.xml
database.port The port of the database (not 1433 Unix:
used for hsqldb). /etc/signserver/database-
conf.xml
Windows: %Installdir
% \database-conf.xml
database.name The name of the database (not signserver Unix:
used for hsqldb). /etc/signserver/database-
conf.xml
Windows: %Installdir
% \database-conf.xml
database.username The username used for signserver Unix:
authentication against the /etc/signserver/database-
database (not used for hsqldb). conf.xml
Windows: %Installdir
% \database-conf.xml
database.password The password used for foo123 Unix:
authentication against the /etc/signserver/database-
database (not used for hsqldb). conf.xml

httpserver.hostname

httpserver.storepath

httpserver.password

Hostname used as CN in
generated SSL Server certificate.

Path to the key store (JKS file)
containing the SSL server
certificate.

Password to unlock the SSL
server certificate key store.

host1.someorg

/
etc/signserver/tomcat
Jks

foo123

Windows: %Installdir
% \database-conf.xml

Only used during the of SSL
Server certificate generation
phase of installation.

Unix:
/etc/signserver/webserver-
conf.xml

Windows: %Installdir

% \webserver-conf.xml

Unix:
/etc/signserver/webserver-

. Sidnr / Page no
SignServer, Manual 60 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3
conf.xml

Windows: %Installdir
%\webserver-conf.xml

httptrust.storepath Path to the key store (JKS file) |/ Unix:
containing the CA trust store. etc/signserver/trustst | /etc/signserver/webserver-
ore.jks conf.xml

Windows: %Installdir
% \webserver-conf.xml

httptrust.password Password unlocking the CA foo123 Unix:
truststore. /etc/signserver/webserver-
conf.xml

Windows: %Installdir
% \webserver-conf.xml

syslog.hostname Host name of the Syslog server. loghost.someorg.org = Unix:
This setting also indicates that /etc/signserver/log-conf.xml
Syslog should be used. Windows: %Installdir%\log-
conf.xml

20.1.2 SgnServer Management

This package installs the CLI interface on the management station (which can be the same as a
node). The following steps are performed during installation:

Unix:

By default is everything unpacked in /opt/signserver-<version> .

If a /etc/signserver/signserver.conf file exists it's read and used during installation.
The user and group 'signserver' is created

A link from /opt/signserver-<version>/bin/signserver.sh is done to /usr/local/bin.

Windows:
e Everything is unpacked in C:\Program\SignServer\SignServer-<version> by default.
e Ifac:\WINDOWS\signserver.conf file exists it's read and used during installation.

The signserver.conf supports the following settings:

Property Name Description Example value Where to manually
reconfigure
hostname.masternode Hostname of master node in the nodel.someorg.org | Unix:
cluster. /etc/signserver/signserver.conf

Windows: %Installdir
%\signserver.conf

hostname.allnodes Hostname of all hosts in cluster, nodel.someorg.org;n | Unix:

i Sidnr / Page no
SignServer, Manual 61 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkéand / Authorized Datum Date Version
29/09/09 3.1.3
separated by ';'. ode2.someorg.org /etc/signserver/signserver.conf

Windows: %Installdir
%\signserver.conf

20.1.3 MailSgner Server

The MailSigner package works much in the same way as the SignServer package with the difference
that James SMTP server is included instead of Jboss.

The steps performed during the installation process are:

Unix:

By default is everything is unpacked in /opt/mailsigner-<version> .

If a /etc/mailsigner/mailsigner.conf file exists it's read and used during installation.

The user and group 'mailsigner’ is created

James init.d script is configured to run at runlevel 3,4,5

Directory /etc/mailsigner/ is created to contain all configuration files

James configuration file /etc/mailsigner/mailsigner conf.xml is populated.

Log configuration file /etc/mailsigner/log-conf.xml is populated and configured to log to the
directory /var/log/mailsigner

e Finally is James started and ready to be used.

Windows:

By default is everything is unpacked in C:\Program\MailSigner\MailSigner-<version> .

If a c:\\WINDOW S S\mailsigner.conf file exists it's read and used during installation.

James is configured to be run as a service that is started automatically.

James configuration file <INSTALLDIR>\mailsigner conf.xml is populated.

Log configuration file <INSTALLDIR>\log-conf.xml is populated and configured to log to
the default directory <INSTALLDIR>\james\logs

e Finally is James started and ready to be used.

The supported properties in the configuration file /etc/mailsigner/mailsigner.conf (or
%SYSTEMROOT%\mailsigner.conf for windows) are:

Uppgjort / Auhtor
Philip Vendil
Godkand / Authorized

SignServer, Manual

Sekretess / Confidentiality
UNRESTRICTED

Datum Date

29/09/09

Sidnr / Page no
62 (76)

Version

3.1.3

Property Name

mailsigner.smtpport

mailsigner.primarydns

mailsigner.secondarydns

mailsigner.postmaster

mailsigner.smtpauth

mailsigner.gatewayhost

mailsigner.gatewayport

mailsigner.tlskeystorepath

Description

Port that the mailserver should
listen on.

The IP address of the primary
DNS server.

The IP address of the secondary
DNS server.

The email address of the main
administrator.

Indicates if SMTP AUTH should
be used. Supported values are :
'true’ which means required but
announced only to not authorized
addresses, 'false' and

'‘announce' which acts like true,
but always announce AUTH
capability to clients.

If emails should be forwarded to
another SMTP server in the
organisation should this and the
'mailsigner.gatewayport' setting
be used. Enter the hostname of
the other SMTP server.

The port of the SMTP server to
forward messages to.

This setting indicates that the
mailsigner should use SMTPS
and point to a TLS JKS keystore.

Example value

25

10.0.0.1

10.0.0.2

mailadmin@someorg

.org

true, false, announce

smtpl.someorg.org

25

/
etc/mailsigner/tlskey
store.jks

Where to manually
reconfigure

Unix:

/
etc/mailsigner/mailsigner conf
ig.xml

Windows: %Installdir

% \mailsigner-config.xml

Unix:

/
etc/mailsigner/mailsigner _conf
ig.xml

Windows: %Installdir
%\mailsigner-config.xml

Unix:

/
etc/mailsigner/mailsigner conf
ig.xml

Windows: %]Installdir
%\mailsigner config.xml

Unix:

/
etc/mailsigner/mailsigner _conf
ig.xml

Windows: %Installdir
%\mailsigner config.xml

Unix:

/
etc/mailsigner/mailsigner _conf
ig.xml

Windows: %Installdir
%\mailsigner config.xml

Unix:

/
etc/mailsigner/mailsigner conf
ig.xml

Windows: %Installdir
%\mailsigner config.xml

/
etc/mailsigner/mailsigner conf
ig.xml

Windows: %Installdir
%\mailsigner config.xml

Unix:
/

etc/mailsigner/mailsigner conf
ig.xml

Sidnr / Page no
SignServer, Manual 63 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Windows: %Installdir
%\mailsigner config.xml

mailsigner.tlskeystorepwd | The password to unlock the TLS foo123 /
keystore etc/mailsigner/mailsigner _conf
ig.xml
Windows: %Installdir
%\mailsigner config.xml
syslog.hostname Host name of the Syslog server. | loghost.someorg.org | Unix:
This setting also indicates that /etc/mailsigner/log-conf.xml
syslog should be used. Windows: %]Installdir%\log-

20.1.4 MailSgner Management

conf.xml

This package installs the CLI interface on the management station (which can be the same as the

SMTP server). The following steps are performed during installation:

Unix:

The user and group 'mailsigner’ is created

Windows:

By default is everything is unpacked in /opt/mailsigner-<version> .
If a /etc/mailsigner/mailsigner.conf file exists it's read and used during installation.

A link from /opt/mailsigner-<version>/bin/mailsigner.sh is done to /usr/local/bin.

e Everything is unpacked in C:\Program\MailSigner\MailSigner-<version> by default.
o Ifac:\WINDOWS\mailsigner.conf file exists it's read and used during installation.

The mailsigner.conf supports the following settings but it is important that 'hostname.masternode’'

and 'hostname.allnodes' must point to the same host:

Property Name Description Example value = Where to manually
reconfigure
hostname.masternode The hostname of the mailsigner mailsigner.someorg.o | Unix:
to manage. rg /etc/mailsigner/mailsigner.conf
Windows: %Installdir
%\mailsigner.conf
hostname.allnodes The hostname of the mailsigner mailsigner.someorg.o | Unix:

to manage and should have the |rg
same value as master node.
MailSigner doesn't support
clustering

20.2 Generating Installation Packages

/etc/mailsigner/mailsigner
.conf

Windows: %Installdir
%\mailsigner .conf

Sidnr / Page no
SignServer, Manual 64 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

Before generating a installation package must Bitrock InstallBuilder be installed on a Linux
workstation. Then set the build mode in signserver build.properties and go to src/install/bitrock. If a
SignServer package should be generated must the environment variable JBOSS PREP point the a
prepared JBoss installation that will be included in the package.

Then execute the script './buildsignserverpkgs.sh <version>' to start the generation process. The
packages will be generated in BitRocks default output directory. For MailSigner use the script
'buildmailsignerpkgs.sh'.

Sidnr / Page no
SignServer, Manual 65 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

21 For Developers

This section describes the details of how to develop your own plug-ins for the SignServer API. It
goes through most of the necessary interfaces to get going.

21.1 Building with Customized Code

It is possible to have your own code in a separate code tree to avoid a mix of custom code with
SignServer project code. This makes it easier to maintain and update the code for future versions.
This is done by configuring one or more of the 'custom.' parameters in the build configuration file.
The are each described here:

custom.src.java = Should point to an external directory containing the package base of the
Java code. These are then included in the compilation at build time.

custom.src.web = Should point to the base of a WAR source tree with WEB-INF/web.xml
included. This will replace the default WAR deployed during the build.

custom.build.xml = This can point to a custom build.xml that will be imported from the
main build.xml and lets the developer include his own ant tasks if necessary.

custom.commandfactory = Should point to a custom implementation of the interface
org.signserver.cli.1signServerCommandFactory. This gives to ability to extend (or
replace) the default CLI with another one. The best way of extending the CLI is to look at
how the DefaultSignServerCommandFactory IS structured.

21.2 Implementing Workers

The main component in the SignServer is the Worker from which most other components inherits.
To get a better overview of how the different component types relate to one and another see
illustration 1 in the Overview section.

Most workers work in the same way but with different interfaces to implement but for all of them
should the following steps be performed.

e Create a custom class implementing the specified interface. There usually exists a base class
implementing the most basic function to simply the implementation even further. If it exists
it's recommended to inherit it.

e You can define your own properties that the worker can use for its configuration.

Make sure the custom class is available to the application server

e Redeploy the SignServer.

Sidnr / Page no
SignServer, Manual 66 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

e Register the worker in the application by setting a property WOoRKER<id>.CLASSPATH with a
global scope in the global configuration. (Also make sure to set it's crypto tokens class-path,
see separate section).

e Reload the service with the CLI reload command.

21.2.1 The ISgner Interface

A Signer is a component used to perform some form of cryptographic processing of requested data
and to create a custom signer class it should implement the org.signserver.server.signers.ISigner
interface. There exists a BaseSigner that can be inherited taking care of some of the functionality. If
the BaseSigner is inherited the only method that needs to be implemented is 'processbata() .

There exists a DummySigner implementation that is used for demonstration purposes.

21.2.2 The ITimedService Interface

There are two kinds of timed services, singleton or non-singleton. A singleton service is only run at
one of the nodes at the time while non-singleton services are run at all nodes simultaneously. If a
singleton service fails to run on one of the nodes will one of the other nodes take over the service
automatically.

If a service should be singleton or not is determined by a standard property SINGLETON defined
in the ServiceConfig class.

Other basic properties used to configure all services are:

ACTIVE when setto “TRUE” means that the service is active and should be run.
INTERVAL defining the interval in seconds of how often the service should be run.
CRON used as a complement to INTERVAL to specify on a calendar basis.

To create a custom timed service class it should implement the
org.signserver.server.timedservices.I TimedService interface. There exists a BaseTimedService that
can be inherited taking care of most of the basic functionality. If the BaseTimedService is inherited
the the only method that needs to be implemented is the 'work()' method.

The work method that needs to be implemented is described here:
/* *
* Method that should do the actual work and should
* be implemented by all services. The method is run
* at a periodical interval defined in getNextInterval.
*
* ServiceExecutionFailedException if execution of a service failed
*/

public void work() throws ServiceExecutionFailedException;

There exists a DummyTimedService implementation that is used for demonstration purposes.

Sidnr / Page no
SignServer, Manual 67 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

21.2.3 [ValidationService Interface

Just as the other worker plug-ins have the validator service a base class taking care of most of the
common methods and the only method that needs to be implemented is the 'validate' method below.
But for most applications should the DefaultValidationService work. What is probably more
interesting is to develop a custom I'Validator used to integrate the default validation service against
different certificate status repositories. See section called 'Other Customizations' for details of how
to implement a Validator.

/**
* Method used to check the validation of a certificate
*
* validationRequest
* a ValidateResponse
*

IllegalRequestException if data in the request didn't conform with the
specification.
* CryptoTokenOfflineException if the crypto token isn't online.

* SignServerException for general failure exception during validation
* org.signserver.validationservice.common.ValidateRequest

* org.signserver.validationservice.common.ValidateResponse

*/

ValidateResponse validate (ValidateRequest validationRequest) throws IllegalRequestException,
CryptoTokenOfflineException, SignServerException;

21.2.4 |GroupKeyService Interface

To customize a group key service is slightly more work. Then need five methods be implemented:
'fetchGroupKey', 'pregenerateGroupKeys', 'swithEncryptionKey', removeGroupKeys' and
'getStatus'. The default implementation stores the group keys in database with a reference to the
encryption key used, the encryption key is stored in the extended key store. See the JavaDoc and the
code for the default group key service for more details of implementing a customized one.

/**

* Main method of a Group Key Service responsible for fetching keys from
* the database.

*

* fetchKeyRequest

* a FetchKeyReponse

*

IllegalRequestException if data in the request didn't conform with the
specification.
* CryptoTokenOfflineException if the crypto token isn't online.

* SignServerException for general failure exception during key generation.
* org.signserver.groupkeyservice.common.FetchKeyRequest

* org.signserver.groupkeyservice.common.FetchKeyResponse

*/

FetchKeyResponse fetchGroupKey (FetchKeyRequest fetchKeyRequest) throws
IllegalRequestException, CryptoTokenOfflineException, SignServerException;

/**
* Method that instructs the group key service to pregenerate keys.
* This method is called at periods when the server is having

Sidnr / Page no
SignServer, Manual 68 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

a low load. This option is optional to implement, if the
service doesn't support this method it should return null.

@param pregenerateKeysRequest request data

@return a response containing number of keys generated, etc

@throws IllegalRequestException if requests contain unsupported data.

@throws CryptoTokenOfflineException if the crypto token isn't online.

@throws SignServerException for general failure exception during key generation.
@see org.signserver.groupkeyservice.common.PregenerateKeysRequest

@see org.signserver.groupkeyservice.common.PregenerateKeysResponse

PregenerateKeysResponse pregenerateGroupKeys (PregenerateKeysRequest pregenerateKeysRequest)
throws IllegalRequestException, CryptoTokenOfflineException, SignServerException;

ok ok ok ok ok ok ok ok ok K ok kb *
~

*

Method instructing the key service to switch the encryption key for
storing the group keys in the database. This to ensure that one encryption
key isn't exposed through to much data.

This method is optional for the implementing service to implement, if
it's not implemented it should return null.

@param switchEncKeyRequest request data.

@return a response containing the result of the operation such as new key index.
@throws IllegalRequestException if requests contain unsupported data.

@throws CryptoTokenOfflineException if the crypto token isn't online.

@throws SignServerException for general failure exception during key generation.
@see org.signserver.groupkeyservice.common.SwitchEncKeyRequest

@see org.signserver.groupkeyservice.common.SwitchEncKeyResponse

SwitchEncKeyResponse switchEncryptionKey (SwitchEncKeyRequest switchEncKeyRequest) throws
IllegalRequestException, CryptoTokenOfflineException, SignServerException;

/

LR I A R T R

removed.

* ok ok ok

*

*

*

Method instructing the key service to remove old group keys not used anymore

it up to the caller to check that the implementing service supports the type

of IRemoveGroupKeyRequest used. The request should contain data specifying which
keys that should be removed.

This method is optional for the implementing service to implement, if
it's not implemented it should return null.

@param removeGroupKeyRequests request data.
@return a response containing the result of the operation such as number of keys actually

@throws IllegalRequestException if requests contain unsupported data.

@throws CryptoTokenOfflineException if the crypto token isn't online.

@throws SignServerException for general failure exception during key generation.
@see org.signserver.groupkeyservice.common.RemoveGroupKeyResponse

@see org.signserver.groupkeyservice.common.IRemoveGroupKeyRequest

/

RemoveGroupKeyResponse removeGroupKeys (IRemoveGroupKeyRequest removeGroupKeyRequests) throws
IllegalRequestException, CryptoTokenOfflineException, SignServerException;

/*
*
*

*
*

*

Should return the actual status of the worker, status could be if
the signer is activated or not, or equivalent for a service.
@return a WorkerStatus object.

/

public WorkerStatus getStatus();

Sidnr / Page no
SignServer, Manual 69 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

21.2.5 IMailProcessor Interface

Implementing a MailProcessor for the MailSigner is almost exactly the same as for the other
components but here it's the 'service' method that needs to be implemented. There also exists a
utility class called SMIMEHelper that contains methods for securing emails.

/**

* Main method used when processing mails

* mail the mail sent through the SMTP server

* MessagingException if error occurred during processing of mail.

* CryptoTokenOfflineException if the signing token not available at the time of the
process.

*/

void service(Mail mail) throws MessagingException, CryptoTokenOfflineException;

21.3 Implementing Crypto Tokens

21.3.1 The ICryptoToken Interface

e A custom crypto token needs to implement the interface
org.signserver.server.cryptotokens.ICryptoToken. See P12CryptoToken for an example
implementation.

e You can define own properties for a crypto token in the same way as for workers. The
properties are sent to the crypto token upon initialization.

e Make sure the custom class is available to the application server

Redeploy the SignServer.

e Register the crypto token to a worker in the application by setting a property
WORKER<id>.CRYPTOTOKEN.CLASSPATH Wwith a global scope in the global configuration.
(Also make sure to set it's crypto tokens class-path, see next section).

e Reload the service with the CLI reload command.

The ICryptoToken interface have the following methods that needs to be implemented:

public interface ICryptoToken ({
public static final int PURPOSE SIGN = 1;
public static final int PURPOSE DECRYPT = 2;

public static final int PROVIDERUSAGE SIGN =1
public static final int PROVIDERUSAGE DECRYPT = 2

/**
* Method called after creation of instance.
*

*/
public abstract void init (Properties props) throws
CryptoTokenInitializationFailureException;

/**
* Method that returns the current status of the crypto token.

Sidnr / Page no
SignServer, Manual 70 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3
*
* Should return one of the SignerStatus.STATUS .. values
*/
public abstract int getCryptoTokenStatus();
/ * %
* Method used to activate SignTokens when connected after being off-line.
*
* @param authenticationcode used to unlock crypto token, i.e PIN for smartcard HSMs
* @throws CryptoTokenOfflineException if SignToken is not available or connected.
* @throws CryptoTokenAuthenticationFailureException with error message if authentication to
crypto token fail.
*/

public abstract void activate(String authenticationcode) throws
CryptoTokenAuthenticationFailureException, CryptoTokenOfflineException;

/**

*
*
*

*

Method used to deactivate crypto tokens.
Used to set a crypto token too off-line status and to reset the HSMs authorization code.

@return true if deactivation was successful.

*/
public abstract boolean deactivate();

/** Returns the private key (if possible) of token.

*

* @param purpose should one of the PURPOSE ... constants
* @throws CryptoTokenOfflineException if CryptoToken is not available or connected.
* @return PrivateKey object

*/

public abstract PrivateKey getPrivateKey (int purpose) throws CryptoTokenOfflineException;

/** Returns the public key (if possible) of token.

*

* @param purpose should one of the PURPOSE ... constants
* @throws CryptoTokenOfflineException if CryptoToken is not available or connected.
* @return PublicKey object

*/

public abstract PublicKey getPublicKey (int purpose) throws CryptoTokenOfflineException;

/** Returns the signature Provider that should be used to sign things with

*
*
*
*

*/

the PrivateKey object returned by this crypto device implementation.

@param providerUsage should be one if the ICryptoToken.PROVIDERUSAGE constants
specifying the usage of the private key.
@return String the name of the Provider

public abstract String getProvider (int providerUsage) ;

/**

*
*
*
*
*
databas

*

*/

Method returning the crypto tokens certificate if it's included in the token.
This method should only be implemented by soft crypto tokens which have the certificate
included in the key store.

All other crypto tokens should return 'null' and let the signer fetch the certificate from
e.

public abstract Certificate getCertificate(int purpose) throws CryptoTokenOfflineException;

*

P

databas

*

*/

Method returning the crypto tokens certificate chain if it's included in the token.
This method should only be implemented by soft crypto tokens which have the certificates
included in the key store.

All other crypto tokens should return 'null' and let the signer fetch the certificate from
e.

Sidnr / Page no
SignServer, Manual 71 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

public abstract Collection<Certificate> getCertificateChain (int purpose) throws
CryptoTokenOfflineException;

/**
* Method used to tell the crypto token to create a certificate request using its crypto
token.
*/
public ICertRegData genCertificateRequest (ISignerCertReglInfo info) throws
CryptoTokenOfflineException;

/~k~k
* Method used to remove a key in the signer that shouldn't be used any more
* @param purpose on of ICryptoToken.PURPOSE constants
* @return true if removal was successful.
*/
public boolean destroyKey (int purpose);

21.3.2 The Extended Crypto Token Interface

The default group key service need support for symmetric keys in addition the the functionality
provided in the basic crypto token which mainly focuses on asymmetric key functionality.

The extended crypto token adds four more methods that need implementation used to generate
exportable keys (symmetric or asymmetric) and to encrypt/decrypt data using symmetric keys.

public interface IExtendedCryptoToken extends ICryptoToken {

/**
* Method instructing the crypto token to generate a key that is returned
*
* (@param keyAlg the key algorithm to generate, it's up to the caller to check that the
crypto token
* used supports the given value.
* (@param keySpec specification of the key, it's up to the caller to check that the crypto
token
* used supports the given value.
* @return either a java.security.Key or a java.security.KeyPair depending on type of keyAlg
sent to the the crypto token.
* @throws IllegalRequestException if the token doesn't support the given key alg or key
spec.
* @throws CryptoTokenOfflineException if the token isn't online.
*/
Serializable genExportableKey (String keyAlg, String keySpec) throws IllegalRequestException,
CryptoTokenOfflineException;
/ *
Instructs the crypto token to generate a key stored in the device returning only
a alias reference to the key.

I

@param keyAlg the key algorithm to generate, it's up to the caller to check that the
crypto token

* @param keySpec keySpec specification of the key, it's up to the caller to check that the
crypto token

* used supports the given value.

* @return a reference to the key in that can be used later for encryption/decryption.

*

* @throws IllegalRequestException if the token doesn't support the given key alg or key
spec.

*

@throws CryptoTokenOfflineException if the token isn't online.
*/

Sidnr / Page no
SignServer, Manual 72 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

String genNonExportableKey (String keyAlg, String keySpec) throws IllegalRequestException,
CryptoTokenOfflineException;

/**
* Method used to encrypt data using a key stored in the crypto token. This
* method should mainly be used for symmetric encryption.
* @param keyRef a alias reference to the key that should be used.
* (@param data the data to encrypt.
* @return the encrypted data.
* @throws CryptoTokenOfflineException if the token isn't online.
*/
byte[] encryptData(String keyRef, byte[] data) throws CryptoTokenOfflineException;
/**
* Method used to decrypt data using a key stored in the crypto token. This
* method should mainly be used for symmetric encryption.
* @param keyRef a alias reference to the key that should be used.
* (@param data the data to decrypt.
* @return the encrypted data.
* @throws CryptoTokenOfflineException if the token isn't online.
*

~

byte[] decryptData(String keyRef, byte[] data) throws CryptoTokenOfflineException;

21.4 Other Customizations

21.4.1 ThelValidator Interface

A Validator is used in the DefaultValidationService to connect to different kinds of certificate status
repositories, such as CRL, OCSP, XKMS, database etc. It contains two methods 'validate' used for
the actual certificate validation and 'testConnection' used by health check related functionality to
check that the connection to the underlying validator resource is alright.

/**
* Main method of a Validation Service responsible for validating certificates.
*

* Important a validator also have to support to check the revocation status of the
* involved CA certificates and should only return Validation object with status REVOKED or

VALID

* If the validator doesn't support the given issuer it must return null.

*

*

* @param cert the certificate to validate.

* @return a Validation object or null if the certificate couldn't be looked up in this
validator.

* @throws IllegalRequestException if data in the request didn't conform with the
specification.
* @throws CryptoTokenOfflineException if the crypto token isn't online.
* @throws SignServerException for general failure exception during validation.
*/
Validation validate (ICertificate cert) throws IllegalRequestException,
CryptoTokenOfflineException, SignServerException;

Sidnr / Page no
SignServer, Manual 73 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkand / Authorized Datum Date Version
29/09/09 3.1.3

/**
* Optional method used to test the connection to a specific underlying validator
implementation.
*
* @throws ConnectException if connection to underlying validator implementation failed.
* @throws SignServerException for general failure exception during validation.
*/
void testConnection () throws ConnectException, SignServerException;

21.4.2 The |Authorizer Interface

It's possible to integrate the authorization of processable requests with external authorizations
applications. All that is needed is a class implementing the [Authorizer interface containing two
methods, 'init' and 'isAuthorized'.

To register that the customized authorizer should be used by a worker, all that's needed to be done is
to set the property AUTHTYPE to the class path of the authorizer implementation.

public interface TAuthorizer ({

/**
* Method called by the worker upon first call to the authenticator after instantiation.
*
* @param workerId id of worker.
* (@param config active worker configuration of worker
* @param em the SignServer EntityManager
* @throws SignServerException if unexpected error occurred during initialization.
*/
void init (int workerId, WorkerConfig config, EntityManager em) throws SignServerException;
/**
*
* Main method determining if the requester is authorized to process the data in the
request.
*
* (@param request the request data sent to the worker to process.
* @param requestContext containing the optional clientCert client certificate or remote IP
of the user, may also contain customly defined data.
* @throws SignServerException if unexpected error occurred during authorization.
* @throws IllegalRequestException if the requester isn't authorized or couldn't be
authenticated for some other reason.
*/
void isAuthorized(ProcessRequest request, RequestContext requestContext) throws
IllegalRequestException, SignServerException;

}

Sidnr / Page no
SignServer, Manual 74 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

21.5 Using the Global Configuration Store

The global configuration store is a memory bank that workers can use to store data used

in ongoing operations. The data can be either node (i.e. only read by the current node) or global
scoped.

To access the global configuration store use the getGlobalConfigurationSession () method
from the BaseWorker (inherited by most of the base component implementations). The returned
GlobalConfigurationSession have the following methods that can be used (the other ones should be
avoided)

/**
* Method setting a global configuration property. For node. prefix will the
node id be appended.

* scope, one of the GlobalConfiguration.SCOPE_ constants

* key of the property should not have any scope prefix, never null
* value the value, never null.

*/

public void setProperty(java.lang.String scope,java.lang.String
key,java.lang.String value) ;
/**

* Method used to remove a property from the global configuration.

* scope, one of the GlobalConfiguration.SCOPE_ constants

* key of the property should start with either glob. or node., never
null

* true if removal was successful, othervise false.

*/

public boolean removeProperty(java.lang.String scope,java.lang.String key)
,/**

* Method that returns all the global properties with Global Scope and Node
scopes properties for this node.

* A GlobalConfiguration Object, nevel null
*/
public org.signserver.common.GlobalConfiguration getGlobalConfiguration() ;

The getGlobalConfiguration returns a GlobalConfiguration and have a method
String getProperty (String scope, String property) that can be used.

The value of the property can be user-defined as long as it is guaranteed to be unique over the entire
application.

Reserved values are all property keys starting with “WORKER” .

Sidnr / Page no
SignServer, Manual 75 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

22 Testing

There exists some test scripts used to test that the SignServer functions correctly. They are described
here.

22.1 Automatic Junit Tests
Automatic Junit tests lies in the directory 'src/tests'. There are two different test suites, one for
the SignServer build and the other for the MailSigner. The same command applies for both.

Important: For the SignServer test suite to run successful through all the tests must both the Main
WebService and validation service WebService API be enabled in the build configuration.

To run the test suite do the following:
+ Set the environment variable SSIGNSERVER HOME
« Make sure the sign server is deployed and JBoss is running
+ do 'ant test:run'
« A protocol is generated in the directory 'tmp/bin/junit'

22.2 Testing the TimeStamp Authority

22.2.1 The TSA Test Client

There exists a Time Stamp Authority test client that is built with the main distribution. For other
workers it's recommended to test it with the WS CLI client described in the '"Main WebService'
section.

It only works without client authentication requirements and through HTTP.

To run the client do

ant

cd dist-client

java -jar timeStampClient.jar “http://<hostname>:8080/signserver/tsa?signerId=1"

It will continuously make one request per second.
22.2.2 Manual Tests

The time stamp signer have been tested with the OpenTSA client with both HTTP and HTTPS.

Sidnr / Page no

SignServer, Manual 76 (76)
Uppgjort / Auhtor Sekretess / Confidentiality
Philip Vendil UNRESTRICTED
Godkénd / Authorized Datum Date Version
29/09/09 3.1.3

23 References

Java (http://java.sun.com)

Jboss (http://www.jboss.org)

Apache James mail server (http.//james.apache.org/)

Apache Ant (http.://ant.apache.org)

Bouncycastle (http.//www.bouncycastle.org)

RFC3161, Time-Stamp Protocol (TSP) (http://www.ietf.org)

http://www.ietf.org/
http://www.bouncycastle.org/
http://ant.apache.org/
http://james.apache.org/
http://www.jboss.org/
http://java.sun.com/

	1 Introduction/Scope
	1.1 Changes from previous versions
	1.1.1 Changes between Version 3.0 and Version 3.1
	1.1.2 Changes between Version 2 and Version 3
	1.1.3 Changes between Version 1 and Version 2

	2 Document History
	3 Quick start of a Simple Time-stamp Server
	3.1 Required Software
	3.2 Installation Steps

	4 Quick start of a Simple Mail Signer
	4.1 Required Software
	4.2 Installation Steps

	5 Terms Used in This Document
	6 Overall Architecture
	6.1 SignServer
	6.2 MailSigner

	7 Available Plug-ins
	7.1 Configuring a plug-in
	7.2 SignServer Signers
	7.2.1 Time-stamp Signer
	7.2.1.1 Overview
	7.2.1.2 Available Properties

	7.2.2 MRTD Signer
	7.2.2.1 Overview
	7.2.2.2 Available Properties

	7.2.3 PDF Signer
	7.2.3.1 Overview
	7.2.3.2 Available Properties

	7.2.4 ODF Signer
	7.2.4.1 Overview
	ODF Signer, which stands for Open Document Format Signer is a plug-in to SignServer that applies server side signature to documents in ODF format. It has been tested with Open Office 3.1.
	7.2.4.2 Available Properties

	7.2.5 OOXML Signer
	7.2.5.1 Overview 	
	OOXML Signer, which stands for Open Office XML Signer is a plug-in to SignServer that applies server side signature to documents in OOXML format. It has been tested with MS Office 2007.
	7.2.5.2 Available Properties

	7.3 SignServer Validation Service Framework
	7.3.1 DefaultValidationService
	7.3.1.1 Overview
	7.3.1.2 Available Properties

	7.3.2 The Validation CLI interface.

	7.4 SignServer Group Key Service Framework
	7.4.0.1 Overview
	7.4.0.2 Available Properties

	7.5 Mail Processors
	7.5.1 SimpleMailSigner
	7.5.1.1 Overview
	7.5.1.2 Available Properties

	8 Available CryptoTokens
	8.1 P12CryptoToken
	8.1.1 Overview
	8.1.2 Available Properties

	8.2 PrimeCardHSMCryptoToken
	8.2.1 Overview
	8.2.2 Available Properties

	8.3 PKCS11CryptoToken
	8.3.1 Overview
	8.3.2 Available Properties
	8.3.3 Example usage

	8.4 SoftCryptoToken
	8.4.1 Overview
	8.4.2 Available Properties
	8.4.3 Example usage

	9 Setting Authorization Type
	9.1 SignServer
	9.2 MailSigner

	10 Disabling a Worker
	11 Archiving Responses (SignServer only)
	12 Checking validity of signer certificates (SignServer only)
	13 The Global Configuration Store
	13.1 SignServer specific
	13.2 MailSigner Specific

	14 Timed Services
	14.1 CertificateExpireTimedService (MailSigner only)
	14.1.1 Overview
	14.1.2 Available Properties
	14.1.3 Available Substitution Variables

	15 The Main WebService Interface
	15.1 Overview
	15.2 Java Client API
	15.2.1 Load Balance Policies
	15.2.2 CLI Client

	16 The Cluster Class Loader
	16.1 How to configure your worker to use the Cluster Class Loader
	16.2 Building Module Archives
	16.2.1 The MAR Descriptor
	16.2.2 Including Worker Configurations
	16.2.3 Using ANT
	16.2.4 Building Manually
	16.2.5 Managing Module Archives
	16.2.6 Changing the default configuration of the Cluster Class Loader

	17 Building and Deploying the SignServer or MailSigner
	18 Administrating the SignServer
	18.1 General Commands
	18.2 SignServer Specific Commands
	18.2.1 Authorization Related
	18.2.2 Database Related
	18.2.3 Archive Related
	18.2.4 Group Key Service Related
	18.2.5 Module Archive Related

	18.3 MailSigner Specific Commands

	19 Making the SignServer highly-available
	19.1 HTTP access requires a load balancer
	19.2 Setting up a MySQL Cluster
	19.3 MailSigner

	20 Installation Packages
	20.1 Using the Installation Packages
	20.1.1 SignServer Node
	20.1.2 SignServer Management
	20.1.3 MailSigner Server
	20.1.4 MailSigner Management

	20.2 Generating Installation Packages

	21 For Developers
	21.1 Building with Customized Code
	21.2 Implementing Workers
	21.2.1 The ISigner Interface
	21.2.2 The ITimedService Interface
	21.2.3 IValidationService Interface
	21.2.4 IGroupKeyService Interface
	21.2.5 IMailProcessor Interface

	21.3 Implementing Crypto Tokens
	21.3.1 The ICryptoToken Interface
	21.3.2 The Extended Crypto Token Interface

	21.4 Other Customizations
	21.4.1 The IValidator Interface
	21.4.2 The IAuthorizer Interface

	21.5 Using the Global Configuration Store

	22 Testing
	22.1 Automatic Junit Tests
	22.2 Testing the TimeStamp Authority
	22.2.1 The TSA Test Client
	22.2.2 Manual Tests

	23 References

